Abstract

The cw, interpulse, and intrapulse frequency stabilities of a compact, sealed-off CO2 Doppler lidar transmitter are characterized. A cw stability of 1 part in 5 × 1011 for 1-s averaging times, maximum pulse-to-pulse frequency deviations of ±49 kHz for periods of seconds at a pulse repetition frequency of 1 kHz, and pulses with low-frequency chirp are demonstrated in a instrument suitable for the field.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Lawrence, R. M. Hardesty, M. J. Post, R. A. Richter, R. M. Huffaker, F. F. Hall, “Performance characteristics of the NOAA pulsed Doppler lidar and its application to atmospheric measurements,” in Fifth Symposium on Metrological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1983), pp. 481–487.
  2. J. Rothermel, C. Kessinger, D. L. Davis, “Dual-Doppler lidar measurements of winds in the JAWS experiment,” J. Atmos. Oceanogr. Tech. 2, 138–147 (1985).
    [CrossRef]
  3. C. A. DiMarzio, J. W. Bilbro, “An airborne Doppler lidar,” NASA Conf. Publ. 2138, 529–540 (1980).
  4. J. L. Lachambre, P. Lavigne, M. Verreault, G. Otis, “Frequency and amplitude characteristics of a high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-14, 170–177 (1978).
    [CrossRef]
  5. P. W. Pace, J. M. Cruickshank, “A frequency stabilized compact high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-16, 937–944 (1980).
    [CrossRef]
  6. M. R. Harris, D. V. Willets, “Acoustic phenomena associated with a TEA laser discharge,” J. Phys. D 16, 125–133 (1983).
    [CrossRef]
  7. P. K. Gupta, R. G. Harrison, “Frequency stable long pulse operation of a self sustained TE CO2 laser,” Opt. Commun. 74, 318–320 (1990).
    [CrossRef]
  8. B. T. Upchurch, D. R. Schryer, K. G. Brown, E. J. Kielin, G. B. Hoflund, S. D. Gardener, “Recent advances in CO2 laser catalysts,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 21–29 (1991).
  9. D. V. Willets, M. R. Harris, “Homogeneous catalysis for CO2 lasers,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 33–34.
  10. A. A. Woodfield, J. M. Vaughan, “Airspeed and wind shear measurements with an airborne CO2 cw laser,” Int. J. Aviat. Safety 1, 207–209 (1983).
  11. J. L. Gras, W. D. Jones, “Australian aerosol backscatter survey,” Appl. Opt. 28, 852–856 (1989).
    [CrossRef] [PubMed]
  12. S. W. Henderson, C. P. Hale, P. J. M. Suni, J. R. Magee, “Solid-state coherent laser radar technology at 2 μm: current status and future prospects,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 92–94.
  13. C. P. Hale, S. W. Henderson, J. R. Magee, S. R. Vetorino, “Compact high energy ND:YAG coherent laser radar transceiver,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 133–135.
  14. S. Marcus, J. W. Caunt, “Compact CO2 laser for infrared heterodyne radar,” Rev. Sci. Instrum. 49, 1410–1412 (1978).
    [CrossRef] [PubMed]
  15. E. Arimondo, E. Menchi, “Analysis of Q-switch in a CO2 laser with a saturable absorber,” Appl. Phys. B 37, 55–61 (1985).
    [CrossRef]
  16. S. Marcus, D. T. Stein, “Piezoelectric Q-switching of a CO2 laser,” Rev. Sci. Instrum. 58, 128–130 (1987).
    [CrossRef]
  17. L. M. Laughman, R. J. Wayne, C. R. Lane, “Programmable transmitters for coherent laser radars,” in Physics and Technology of Coherent Infrared Radar I, R. C. Harney, ed., Proc. Soc. Photo-Opt. Instrum. Eng.300, 163–172 (1981).
  18. S. Marcus, G. M. Carter, “Electrooptically Q-switched CO2 waveguide laser,” Appl. Opt. 18, 2824–2826 (1979).
    [CrossRef] [PubMed]
  19. H. Ahlberg, S. Lundqvist, D. Letalick, I. Renhorn, O. Steinvall, “Imaging Q-switched CO2 laser radar with heterodyne detection,” Appl. Opt. 25, 2891–2897 (1986).
    [CrossRef] [PubMed]
  20. R. C. Hollins, D. L. Jordan, “Electro-optic frequency shifts in a Q-switched CO2 laser,” J. Phys. D 17, 1327–1334 (1984).
    [CrossRef]
  21. R. L. Shoemaker, R. E. Scotti, B. Comaskey, J. M. Soto, “Frequency-switchable CO2 laser: design and performance,” Appl. Opt. 21, 961–965 (1982).
    [CrossRef] [PubMed]
  22. R. C. Harney, “Laser prf considerations in differential absorption applications,” Appl. Opt. 22, 3747–3750 (1983).
    [CrossRef] [PubMed]
  23. G. N. Pearson, B. J. Rye, R. M. Hardesty, “Design of a high prf CO2 Doppler lidar for atmospheric monitoring,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 143–147 (1990).
  24. G. N. Pearson, “Design and performance of a compact CO2 Doppler lidar transmitter,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 147–150 (1991).
  25. A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced modulation of RF excited CO2 waveguide lasers,” IEEE J. Quantum Electron. QE-27, 1939–1945 (1991).
    [CrossRef]
  26. M. J. Padgett, N. Bett, R. J. Butcher, “A simple frequency discriminator circuit for offset locking of lasers,” J. Phys. E 21, 554–557 (1988).
    [CrossRef]
  27. K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hall, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. QE-26, 711–717 (1990).
    [CrossRef]
  28. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
    [CrossRef]
  29. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE. 54, 221–230 (1966).
    [CrossRef]
  30. C. Freed, R. G. O’Donnell, “Advances in “laser CO2 stabilisation using the 4.3 μm fluorescence technique,” Metrologia 13, 151–156 (1977).
    [CrossRef]
  31. V. I. Tatarskii, Wave Propagation in Turbulent Medium, R. A. Silverman, translator (Dover, New York, 1967).
  32. L. J. Sullivan, “Infrared coherent radar,” in CO2 Laser Devices and Applications, T. S. Hartwick, ed., Proc. Soc. Photo-Opt. Instrum. Eng.227, 148–161 (1980).
  33. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
    [CrossRef] [PubMed]

1991

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced modulation of RF excited CO2 waveguide lasers,” IEEE J. Quantum Electron. QE-27, 1939–1945 (1991).
[CrossRef]

1990

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hall, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. QE-26, 711–717 (1990).
[CrossRef]

P. K. Gupta, R. G. Harrison, “Frequency stable long pulse operation of a self sustained TE CO2 laser,” Opt. Commun. 74, 318–320 (1990).
[CrossRef]

M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
[CrossRef] [PubMed]

1989

1988

M. J. Padgett, N. Bett, R. J. Butcher, “A simple frequency discriminator circuit for offset locking of lasers,” J. Phys. E 21, 554–557 (1988).
[CrossRef]

1987

S. Marcus, D. T. Stein, “Piezoelectric Q-switching of a CO2 laser,” Rev. Sci. Instrum. 58, 128–130 (1987).
[CrossRef]

1986

1985

E. Arimondo, E. Menchi, “Analysis of Q-switch in a CO2 laser with a saturable absorber,” Appl. Phys. B 37, 55–61 (1985).
[CrossRef]

J. Rothermel, C. Kessinger, D. L. Davis, “Dual-Doppler lidar measurements of winds in the JAWS experiment,” J. Atmos. Oceanogr. Tech. 2, 138–147 (1985).
[CrossRef]

1984

R. C. Hollins, D. L. Jordan, “Electro-optic frequency shifts in a Q-switched CO2 laser,” J. Phys. D 17, 1327–1334 (1984).
[CrossRef]

1983

M. R. Harris, D. V. Willets, “Acoustic phenomena associated with a TEA laser discharge,” J. Phys. D 16, 125–133 (1983).
[CrossRef]

A. A. Woodfield, J. M. Vaughan, “Airspeed and wind shear measurements with an airborne CO2 cw laser,” Int. J. Aviat. Safety 1, 207–209 (1983).

R. C. Harney, “Laser prf considerations in differential absorption applications,” Appl. Opt. 22, 3747–3750 (1983).
[CrossRef] [PubMed]

1982

1980

P. W. Pace, J. M. Cruickshank, “A frequency stabilized compact high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-16, 937–944 (1980).
[CrossRef]

C. A. DiMarzio, J. W. Bilbro, “An airborne Doppler lidar,” NASA Conf. Publ. 2138, 529–540 (1980).

1979

1978

J. L. Lachambre, P. Lavigne, M. Verreault, G. Otis, “Frequency and amplitude characteristics of a high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-14, 170–177 (1978).
[CrossRef]

S. Marcus, J. W. Caunt, “Compact CO2 laser for infrared heterodyne radar,” Rev. Sci. Instrum. 49, 1410–1412 (1978).
[CrossRef] [PubMed]

1977

C. Freed, R. G. O’Donnell, “Advances in “laser CO2 stabilisation using the 4.3 μm fluorescence technique,” Metrologia 13, 151–156 (1977).
[CrossRef]

1971

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

1966

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE. 54, 221–230 (1966).
[CrossRef]

Abramski, K. M.

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced modulation of RF excited CO2 waveguide lasers,” IEEE J. Quantum Electron. QE-27, 1939–1945 (1991).
[CrossRef]

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hall, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. QE-26, 711–717 (1990).
[CrossRef]

Ahlberg, H.

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE. 54, 221–230 (1966).
[CrossRef]

Arimondo, E.

E. Arimondo, E. Menchi, “Analysis of Q-switch in a CO2 laser with a saturable absorber,” Appl. Phys. B 37, 55–61 (1985).
[CrossRef]

Baker, H. J.

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced modulation of RF excited CO2 waveguide lasers,” IEEE J. Quantum Electron. QE-27, 1939–1945 (1991).
[CrossRef]

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hall, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. QE-26, 711–717 (1990).
[CrossRef]

Barnes, J. A.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

Bett, N.

M. J. Padgett, N. Bett, R. J. Butcher, “A simple frequency discriminator circuit for offset locking of lasers,” J. Phys. E 21, 554–557 (1988).
[CrossRef]

Bilbro, J. W.

C. A. DiMarzio, J. W. Bilbro, “An airborne Doppler lidar,” NASA Conf. Publ. 2138, 529–540 (1980).

Brown, K. G.

B. T. Upchurch, D. R. Schryer, K. G. Brown, E. J. Kielin, G. B. Hoflund, S. D. Gardener, “Recent advances in CO2 laser catalysts,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 21–29 (1991).

Butcher, R. J.

M. J. Padgett, N. Bett, R. J. Butcher, “A simple frequency discriminator circuit for offset locking of lasers,” J. Phys. E 21, 554–557 (1988).
[CrossRef]

Carter, G. M.

Caunt, J. W.

S. Marcus, J. W. Caunt, “Compact CO2 laser for infrared heterodyne radar,” Rev. Sci. Instrum. 49, 1410–1412 (1978).
[CrossRef] [PubMed]

Chi, A. R.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

Colley, A. D.

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced modulation of RF excited CO2 waveguide lasers,” IEEE J. Quantum Electron. QE-27, 1939–1945 (1991).
[CrossRef]

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hall, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. QE-26, 711–717 (1990).
[CrossRef]

Comaskey, B.

Cruickshank, J. M.

P. W. Pace, J. M. Cruickshank, “A frequency stabilized compact high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-16, 937–944 (1980).
[CrossRef]

Cupp, R. E.

Cutler, L. S.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

Davis, D. L.

J. Rothermel, C. Kessinger, D. L. Davis, “Dual-Doppler lidar measurements of winds in the JAWS experiment,” J. Atmos. Oceanogr. Tech. 2, 138–147 (1985).
[CrossRef]

DiMarzio, C. A.

C. A. DiMarzio, J. W. Bilbro, “An airborne Doppler lidar,” NASA Conf. Publ. 2138, 529–540 (1980).

Freed, C.

C. Freed, R. G. O’Donnell, “Advances in “laser CO2 stabilisation using the 4.3 μm fluorescence technique,” Metrologia 13, 151–156 (1977).
[CrossRef]

Gardener, S. D.

B. T. Upchurch, D. R. Schryer, K. G. Brown, E. J. Kielin, G. B. Hoflund, S. D. Gardener, “Recent advances in CO2 laser catalysts,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 21–29 (1991).

Gras, J. L.

Gupta, P. K.

P. K. Gupta, R. G. Harrison, “Frequency stable long pulse operation of a self sustained TE CO2 laser,” Opt. Commun. 74, 318–320 (1990).
[CrossRef]

Hale, C. P.

C. P. Hale, S. W. Henderson, J. R. Magee, S. R. Vetorino, “Compact high energy ND:YAG coherent laser radar transceiver,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 133–135.

S. W. Henderson, C. P. Hale, P. J. M. Suni, J. R. Magee, “Solid-state coherent laser radar technology at 2 μm: current status and future prospects,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 92–94.

Hall, D. R.

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced modulation of RF excited CO2 waveguide lasers,” IEEE J. Quantum Electron. QE-27, 1939–1945 (1991).
[CrossRef]

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hall, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. QE-26, 711–717 (1990).
[CrossRef]

Hall, F. F.

T. R. Lawrence, R. M. Hardesty, M. J. Post, R. A. Richter, R. M. Huffaker, F. F. Hall, “Performance characteristics of the NOAA pulsed Doppler lidar and its application to atmospheric measurements,” in Fifth Symposium on Metrological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1983), pp. 481–487.

Hardesty, R. M.

T. R. Lawrence, R. M. Hardesty, M. J. Post, R. A. Richter, R. M. Huffaker, F. F. Hall, “Performance characteristics of the NOAA pulsed Doppler lidar and its application to atmospheric measurements,” in Fifth Symposium on Metrological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1983), pp. 481–487.

G. N. Pearson, B. J. Rye, R. M. Hardesty, “Design of a high prf CO2 Doppler lidar for atmospheric monitoring,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 143–147 (1990).

Harney, R. C.

Harris, M. R.

M. R. Harris, D. V. Willets, “Acoustic phenomena associated with a TEA laser discharge,” J. Phys. D 16, 125–133 (1983).
[CrossRef]

D. V. Willets, M. R. Harris, “Homogeneous catalysis for CO2 lasers,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 33–34.

Harrison, R. G.

P. K. Gupta, R. G. Harrison, “Frequency stable long pulse operation of a self sustained TE CO2 laser,” Opt. Commun. 74, 318–320 (1990).
[CrossRef]

Healey, D. J.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

Henderson, S. W.

S. W. Henderson, C. P. Hale, P. J. M. Suni, J. R. Magee, “Solid-state coherent laser radar technology at 2 μm: current status and future prospects,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 92–94.

C. P. Hale, S. W. Henderson, J. R. Magee, S. R. Vetorino, “Compact high energy ND:YAG coherent laser radar transceiver,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 133–135.

Hoflund, G. B.

B. T. Upchurch, D. R. Schryer, K. G. Brown, E. J. Kielin, G. B. Hoflund, S. D. Gardener, “Recent advances in CO2 laser catalysts,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 21–29 (1991).

Hollins, R. C.

R. C. Hollins, D. L. Jordan, “Electro-optic frequency shifts in a Q-switched CO2 laser,” J. Phys. D 17, 1327–1334 (1984).
[CrossRef]

Huffaker, R. M.

T. R. Lawrence, R. M. Hardesty, M. J. Post, R. A. Richter, R. M. Huffaker, F. F. Hall, “Performance characteristics of the NOAA pulsed Doppler lidar and its application to atmospheric measurements,” in Fifth Symposium on Metrological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1983), pp. 481–487.

Jones, W. D.

Jordan, D. L.

R. C. Hollins, D. L. Jordan, “Electro-optic frequency shifts in a Q-switched CO2 laser,” J. Phys. D 17, 1327–1334 (1984).
[CrossRef]

Kessinger, C.

J. Rothermel, C. Kessinger, D. L. Davis, “Dual-Doppler lidar measurements of winds in the JAWS experiment,” J. Atmos. Oceanogr. Tech. 2, 138–147 (1985).
[CrossRef]

Kielin, E. J.

B. T. Upchurch, D. R. Schryer, K. G. Brown, E. J. Kielin, G. B. Hoflund, S. D. Gardener, “Recent advances in CO2 laser catalysts,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 21–29 (1991).

Lachambre, J. L.

J. L. Lachambre, P. Lavigne, M. Verreault, G. Otis, “Frequency and amplitude characteristics of a high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-14, 170–177 (1978).
[CrossRef]

Lane, C. R.

L. M. Laughman, R. J. Wayne, C. R. Lane, “Programmable transmitters for coherent laser radars,” in Physics and Technology of Coherent Infrared Radar I, R. C. Harney, ed., Proc. Soc. Photo-Opt. Instrum. Eng.300, 163–172 (1981).

Laughman, L. M.

L. M. Laughman, R. J. Wayne, C. R. Lane, “Programmable transmitters for coherent laser radars,” in Physics and Technology of Coherent Infrared Radar I, R. C. Harney, ed., Proc. Soc. Photo-Opt. Instrum. Eng.300, 163–172 (1981).

Lavigne, P.

J. L. Lachambre, P. Lavigne, M. Verreault, G. Otis, “Frequency and amplitude characteristics of a high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-14, 170–177 (1978).
[CrossRef]

Lawrence, T. R.

T. R. Lawrence, R. M. Hardesty, M. J. Post, R. A. Richter, R. M. Huffaker, F. F. Hall, “Performance characteristics of the NOAA pulsed Doppler lidar and its application to atmospheric measurements,” in Fifth Symposium on Metrological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1983), pp. 481–487.

Leeson, D. B.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

Letalick, D.

Lundqvist, S.

Magee, J. R.

C. P. Hale, S. W. Henderson, J. R. Magee, S. R. Vetorino, “Compact high energy ND:YAG coherent laser radar transceiver,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 133–135.

S. W. Henderson, C. P. Hale, P. J. M. Suni, J. R. Magee, “Solid-state coherent laser radar technology at 2 μm: current status and future prospects,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 92–94.

Marcus, S.

S. Marcus, D. T. Stein, “Piezoelectric Q-switching of a CO2 laser,” Rev. Sci. Instrum. 58, 128–130 (1987).
[CrossRef]

S. Marcus, G. M. Carter, “Electrooptically Q-switched CO2 waveguide laser,” Appl. Opt. 18, 2824–2826 (1979).
[CrossRef] [PubMed]

S. Marcus, J. W. Caunt, “Compact CO2 laser for infrared heterodyne radar,” Rev. Sci. Instrum. 49, 1410–1412 (1978).
[CrossRef] [PubMed]

McGunigal, T. E.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

Menchi, E.

E. Arimondo, E. Menchi, “Analysis of Q-switch in a CO2 laser with a saturable absorber,” Appl. Phys. B 37, 55–61 (1985).
[CrossRef]

Mullen, J. A.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

O’Donnell, R. G.

C. Freed, R. G. O’Donnell, “Advances in “laser CO2 stabilisation using the 4.3 μm fluorescence technique,” Metrologia 13, 151–156 (1977).
[CrossRef]

Otis, G.

J. L. Lachambre, P. Lavigne, M. Verreault, G. Otis, “Frequency and amplitude characteristics of a high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-14, 170–177 (1978).
[CrossRef]

Pace, P. W.

P. W. Pace, J. M. Cruickshank, “A frequency stabilized compact high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-16, 937–944 (1980).
[CrossRef]

Padgett, M. J.

M. J. Padgett, N. Bett, R. J. Butcher, “A simple frequency discriminator circuit for offset locking of lasers,” J. Phys. E 21, 554–557 (1988).
[CrossRef]

Pearson, G. N.

G. N. Pearson, B. J. Rye, R. M. Hardesty, “Design of a high prf CO2 Doppler lidar for atmospheric monitoring,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 143–147 (1990).

G. N. Pearson, “Design and performance of a compact CO2 Doppler lidar transmitter,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 147–150 (1991).

Post, M. J.

M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
[CrossRef] [PubMed]

T. R. Lawrence, R. M. Hardesty, M. J. Post, R. A. Richter, R. M. Huffaker, F. F. Hall, “Performance characteristics of the NOAA pulsed Doppler lidar and its application to atmospheric measurements,” in Fifth Symposium on Metrological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1983), pp. 481–487.

Renhorn, I.

Richter, R. A.

T. R. Lawrence, R. M. Hardesty, M. J. Post, R. A. Richter, R. M. Huffaker, F. F. Hall, “Performance characteristics of the NOAA pulsed Doppler lidar and its application to atmospheric measurements,” in Fifth Symposium on Metrological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1983), pp. 481–487.

Rothermel, J.

J. Rothermel, C. Kessinger, D. L. Davis, “Dual-Doppler lidar measurements of winds in the JAWS experiment,” J. Atmos. Oceanogr. Tech. 2, 138–147 (1985).
[CrossRef]

Rye, B. J.

G. N. Pearson, B. J. Rye, R. M. Hardesty, “Design of a high prf CO2 Doppler lidar for atmospheric monitoring,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 143–147 (1990).

Schryer, D. R.

B. T. Upchurch, D. R. Schryer, K. G. Brown, E. J. Kielin, G. B. Hoflund, S. D. Gardener, “Recent advances in CO2 laser catalysts,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 21–29 (1991).

Scotti, R. E.

Shoemaker, R. L.

Smith, W. L.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

Soto, J. M.

Stein, D. T.

S. Marcus, D. T. Stein, “Piezoelectric Q-switching of a CO2 laser,” Rev. Sci. Instrum. 58, 128–130 (1987).
[CrossRef]

Steinvall, O.

Sullivan, L. J.

L. J. Sullivan, “Infrared coherent radar,” in CO2 Laser Devices and Applications, T. S. Hartwick, ed., Proc. Soc. Photo-Opt. Instrum. Eng.227, 148–161 (1980).

Suni, P. J. M.

S. W. Henderson, C. P. Hale, P. J. M. Suni, J. R. Magee, “Solid-state coherent laser radar technology at 2 μm: current status and future prospects,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 92–94.

Sydnor, R. L.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

Tatarskii, V. I.

V. I. Tatarskii, Wave Propagation in Turbulent Medium, R. A. Silverman, translator (Dover, New York, 1967).

Upchurch, B. T.

B. T. Upchurch, D. R. Schryer, K. G. Brown, E. J. Kielin, G. B. Hoflund, S. D. Gardener, “Recent advances in CO2 laser catalysts,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 21–29 (1991).

Vaughan, J. M.

A. A. Woodfield, J. M. Vaughan, “Airspeed and wind shear measurements with an airborne CO2 cw laser,” Int. J. Aviat. Safety 1, 207–209 (1983).

Verreault, M.

J. L. Lachambre, P. Lavigne, M. Verreault, G. Otis, “Frequency and amplitude characteristics of a high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-14, 170–177 (1978).
[CrossRef]

Vessot, R. F. C.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

Vetorino, S. R.

C. P. Hale, S. W. Henderson, J. R. Magee, S. R. Vetorino, “Compact high energy ND:YAG coherent laser radar transceiver,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 133–135.

Wayne, R. J.

L. M. Laughman, R. J. Wayne, C. R. Lane, “Programmable transmitters for coherent laser radars,” in Physics and Technology of Coherent Infrared Radar I, R. C. Harney, ed., Proc. Soc. Photo-Opt. Instrum. Eng.300, 163–172 (1981).

Willets, D. V.

M. R. Harris, D. V. Willets, “Acoustic phenomena associated with a TEA laser discharge,” J. Phys. D 16, 125–133 (1983).
[CrossRef]

D. V. Willets, M. R. Harris, “Homogeneous catalysis for CO2 lasers,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 33–34.

Winkler, G. M. R.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

Woodfield, A. A.

A. A. Woodfield, J. M. Vaughan, “Airspeed and wind shear measurements with an airborne CO2 cw laser,” Int. J. Aviat. Safety 1, 207–209 (1983).

Appl. Opt.

Appl. Phys. B

E. Arimondo, E. Menchi, “Analysis of Q-switch in a CO2 laser with a saturable absorber,” Appl. Phys. B 37, 55–61 (1985).
[CrossRef]

IEEE J. Quantum Electron.

A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced modulation of RF excited CO2 waveguide lasers,” IEEE J. Quantum Electron. QE-27, 1939–1945 (1991).
[CrossRef]

J. L. Lachambre, P. Lavigne, M. Verreault, G. Otis, “Frequency and amplitude characteristics of a high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-14, 170–177 (1978).
[CrossRef]

P. W. Pace, J. M. Cruickshank, “A frequency stabilized compact high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-16, 937–944 (1980).
[CrossRef]

K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hall, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. QE-26, 711–717 (1990).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971).
[CrossRef]

Int. J. Aviat. Safety

A. A. Woodfield, J. M. Vaughan, “Airspeed and wind shear measurements with an airborne CO2 cw laser,” Int. J. Aviat. Safety 1, 207–209 (1983).

J. Atmos. Oceanogr. Tech.

J. Rothermel, C. Kessinger, D. L. Davis, “Dual-Doppler lidar measurements of winds in the JAWS experiment,” J. Atmos. Oceanogr. Tech. 2, 138–147 (1985).
[CrossRef]

J. Phys. D

M. R. Harris, D. V. Willets, “Acoustic phenomena associated with a TEA laser discharge,” J. Phys. D 16, 125–133 (1983).
[CrossRef]

R. C. Hollins, D. L. Jordan, “Electro-optic frequency shifts in a Q-switched CO2 laser,” J. Phys. D 17, 1327–1334 (1984).
[CrossRef]

J. Phys. E

M. J. Padgett, N. Bett, R. J. Butcher, “A simple frequency discriminator circuit for offset locking of lasers,” J. Phys. E 21, 554–557 (1988).
[CrossRef]

Metrologia

C. Freed, R. G. O’Donnell, “Advances in “laser CO2 stabilisation using the 4.3 μm fluorescence technique,” Metrologia 13, 151–156 (1977).
[CrossRef]

NASA Conf. Publ.

C. A. DiMarzio, J. W. Bilbro, “An airborne Doppler lidar,” NASA Conf. Publ. 2138, 529–540 (1980).

Opt. Commun.

P. K. Gupta, R. G. Harrison, “Frequency stable long pulse operation of a self sustained TE CO2 laser,” Opt. Commun. 74, 318–320 (1990).
[CrossRef]

Proc. IEEE

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE. 54, 221–230 (1966).
[CrossRef]

Rev. Sci. Instrum.

S. Marcus, J. W. Caunt, “Compact CO2 laser for infrared heterodyne radar,” Rev. Sci. Instrum. 49, 1410–1412 (1978).
[CrossRef] [PubMed]

S. Marcus, D. T. Stein, “Piezoelectric Q-switching of a CO2 laser,” Rev. Sci. Instrum. 58, 128–130 (1987).
[CrossRef]

Other

L. M. Laughman, R. J. Wayne, C. R. Lane, “Programmable transmitters for coherent laser radars,” in Physics and Technology of Coherent Infrared Radar I, R. C. Harney, ed., Proc. Soc. Photo-Opt. Instrum. Eng.300, 163–172 (1981).

G. N. Pearson, B. J. Rye, R. M. Hardesty, “Design of a high prf CO2 Doppler lidar for atmospheric monitoring,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 143–147 (1990).

G. N. Pearson, “Design and performance of a compact CO2 Doppler lidar transmitter,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 147–150 (1991).

T. R. Lawrence, R. M. Hardesty, M. J. Post, R. A. Richter, R. M. Huffaker, F. F. Hall, “Performance characteristics of the NOAA pulsed Doppler lidar and its application to atmospheric measurements,” in Fifth Symposium on Metrological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1983), pp. 481–487.

B. T. Upchurch, D. R. Schryer, K. G. Brown, E. J. Kielin, G. B. Hoflund, S. D. Gardener, “Recent advances in CO2 laser catalysts,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 21–29 (1991).

D. V. Willets, M. R. Harris, “Homogeneous catalysis for CO2 lasers,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 33–34.

S. W. Henderson, C. P. Hale, P. J. M. Suni, J. R. Magee, “Solid-state coherent laser radar technology at 2 μm: current status and future prospects,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 92–94.

C. P. Hale, S. W. Henderson, J. R. Magee, S. R. Vetorino, “Compact high energy ND:YAG coherent laser radar transceiver,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 133–135.

V. I. Tatarskii, Wave Propagation in Turbulent Medium, R. A. Silverman, translator (Dover, New York, 1967).

L. J. Sullivan, “Infrared coherent radar,” in CO2 Laser Devices and Applications, T. S. Hartwick, ed., Proc. Soc. Photo-Opt. Instrum. Eng.227, 148–161 (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of the two commonly mounted lasers.

Fig. 2
Fig. 2

(A) Master oscillator and (B) local oscillator powers as functions of time. (C) The voltage ramp applied to the output coupler piezoelectric transducer (PZT) elements.

Fig. 3
Fig. 3

Transverse beam profiles and contour plots of the (A) local oscillator and (B) master oscillator outputs as recorded by a 32 × 32 pyroelectric array.

Fig. 4
Fig. 4

Example of (A) the heterodyne signal and (B) its power spectrum resulting from the mixing of the two lasers. The digitization rate was 100 MHz, and the transform resolution was 48.80 kHz.

Fig. 5
Fig. 5

(A) Open-loop frequency fluctuations between the two lasers as measured using a fast (< 1-μs response time) analog F–V converter. (B) Amplitude spectrum of the above time series with a 20-Hz frequency resolution.

Fig. 6
Fig. 6

Output of the digital F–V converter for (A) closed- and (B) open-loop conditions. The signal has been low-pass filtered with a time constant of 100 ms.

Fig. 7
Fig. 7

Closed-loop beat frequencies as measured with a frequency counter: (A) Data for 100 successive counts for 1-ms (squares) and 1-s (circles) gate times. (B) 1-s gate time data replotted on an expanded and normalized y axis.

Fig. 8
Fig. 8

Square root of the Allan variance as a function of gate time for (A) an open loop and (B) a closed loop. Each point was evaluated from an independent sample of 100 successive counts.

Fig. 9
Fig. 9

Structure function evaluated from the open-loop time series shown in Fig. 5(A).

Fig. 10
Fig. 10

(A) Q-switched laser pulse and (B) beat pulse resulting from mixing the pulse with the local oscillator. The digitization rate was 100 MHz.

Fig. 11
Fig. 11

Fourier transforms of the square root of data shown in Fig. 10(A) (open squares) and the beat pulse shown in Fig. 10(B) (solid curve). The beat transform has been displaced to zero for comparison.

Fig. 12
Fig. 12

Expanded view of Fig. 10(B) showing the data points.

Fig. 13
Fig. 13

Plot of the peaks of the transforms of 100 equally spaced beat pulses over a time period of 10 s. The laser was operating at a pulse repetition frequency of 1 kHz. The transform resolution was 48.80 kHz.

Fig. 14
Fig. 14

Overlay of 10 pulses equally spaced in time over an interval of 1 s, with the laser running at a pulse repetition rate of 1 kHz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y k ( τ ) = ϕ ( t k ) - ϕ ( t k - τ ) 2 π ν 0 τ ,
σ y 2 ( N , T , τ ) = 1 N - 1 n = 1 N [ y n ( τ ) - 1 N k = 1 N y k ( τ ) ] 2 ,
σ y 2 ( 2 , τ , τ ) = ½ [ y k + 1 ( τ ) - y k ( τ ) ] 2 ,
σ y 2 ( 2 , m T , τ ) = ½ [ y k + m ( τ ) - y k ( τ ) ] 2 = ½ D y ( τ ) ( m T ) ,
D y ( τ ) ( m T ) = 2 [ B y ( τ ) ( 0 ) - B y ( τ ) ( m T ) ] .

Metrics