Abstract

Two lidar methods of determining an atmospheric extinction coefficient profile are compared. The methods are the Klett inversion method for elastic lidar return and the log-derivative method for rotational Raman backscattered signal processing. The comparison includes numerical modeling and processing of lidar measurements when both the elastic and the rotational Raman backscattered signals are measured simultaneously. The suggested idea is that such a comparison can be used as a criterion for the reliability of the results of lidar measurements, similar to the comparison between the results of lidar and contact measurements.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  2. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
    [CrossRef] [PubMed]
  3. I. Grigorov, V. Simeonov, P. Tomov, V. Mitev, Ya. Paneva, P. Georgiev, “Experimental lidar determination of the extinction coefficient profile of visually clear atmosphere with low layer cloudiness,” Bulg. J. Phys. 15, 173–181 (1988).
  4. V. M. Mitev, I. V. Grigorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).
  5. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
    [CrossRef] [PubMed]
  6. J. H. Pollard, A Handbook of Numerical and Statistical Techniques (Cambridge U. Press, Cambridge, Mass., 1977), Chaps. 6–8.
    [CrossRef]
  7. I. V. Samokhvalov, ed., Spektroskopicheskiye Metodi Zondirovaniya Atmosfery (Spectroscopic Methods of Atmospheric Remote Sensing) (Nauka, Novosibirsk, 1985), pp. 30–39.
  8. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, “Optical properties of the atmosphere,” Rep. AFCRL-71-0279, Environmental Research Papers 354 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1971), pp. 8–10.
  9. Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
    [CrossRef] [PubMed]

1990 (2)

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
[CrossRef] [PubMed]

1988 (1)

I. Grigorov, V. Simeonov, P. Tomov, V. Mitev, Ya. Paneva, P. Georgiev, “Experimental lidar determination of the extinction coefficient profile of visually clear atmosphere with low layer cloudiness,” Bulg. J. Phys. 15, 173–181 (1988).

1985 (1)

1983 (1)

1981 (1)

Ansmann, A.

Arshinov, Yu. F.

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef] [PubMed]

Bobrovnikov, S. M.

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef] [PubMed]

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, “Optical properties of the atmosphere,” Rep. AFCRL-71-0279, Environmental Research Papers 354 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1971), pp. 8–10.

Georgiev, P.

I. Grigorov, V. Simeonov, P. Tomov, V. Mitev, Ya. Paneva, P. Georgiev, “Experimental lidar determination of the extinction coefficient profile of visually clear atmosphere with low layer cloudiness,” Bulg. J. Phys. 15, 173–181 (1988).

Grigorov, I.

I. Grigorov, V. Simeonov, P. Tomov, V. Mitev, Ya. Paneva, P. Georgiev, “Experimental lidar determination of the extinction coefficient profile of visually clear atmosphere with low layer cloudiness,” Bulg. J. Phys. 15, 173–181 (1988).

Grigorov, I. V.

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

Klett, J. D.

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, “Optical properties of the atmosphere,” Rep. AFCRL-71-0279, Environmental Research Papers 354 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1971), pp. 8–10.

Mitev, V.

I. Grigorov, V. Simeonov, P. Tomov, V. Mitev, Ya. Paneva, P. Georgiev, “Experimental lidar determination of the extinction coefficient profile of visually clear atmosphere with low layer cloudiness,” Bulg. J. Phys. 15, 173–181 (1988).

Mitev, V. M.

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef] [PubMed]

Paneva, Ya.

I. Grigorov, V. Simeonov, P. Tomov, V. Mitev, Ya. Paneva, P. Georgiev, “Experimental lidar determination of the extinction coefficient profile of visually clear atmosphere with low layer cloudiness,” Bulg. J. Phys. 15, 173–181 (1988).

Pollard, J. H.

J. H. Pollard, A Handbook of Numerical and Statistical Techniques (Cambridge U. Press, Cambridge, Mass., 1977), Chaps. 6–8.
[CrossRef]

Riebesell, M.

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, “Optical properties of the atmosphere,” Rep. AFCRL-71-0279, Environmental Research Papers 354 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1971), pp. 8–10.

Simeonov, V.

I. Grigorov, V. Simeonov, P. Tomov, V. Mitev, Ya. Paneva, P. Georgiev, “Experimental lidar determination of the extinction coefficient profile of visually clear atmosphere with low layer cloudiness,” Bulg. J. Phys. 15, 173–181 (1988).

Simeonov, V. B.

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

Tomov, P.

I. Grigorov, V. Simeonov, P. Tomov, V. Mitev, Ya. Paneva, P. Georgiev, “Experimental lidar determination of the extinction coefficient profile of visually clear atmosphere with low layer cloudiness,” Bulg. J. Phys. 15, 173–181 (1988).

Weitkamp, C.

Zuev, V. E.

Appl. Opt. (3)

Bulg. J. Phys. (2)

I. Grigorov, V. Simeonov, P. Tomov, V. Mitev, Ya. Paneva, P. Georgiev, “Experimental lidar determination of the extinction coefficient profile of visually clear atmosphere with low layer cloudiness,” Bulg. J. Phys. 15, 173–181 (1988).

V. M. Mitev, I. V. Grigorov, V. B. Simeonov, Yu. F. Arshinov, S. M. Bobrovnikov, “Raman lidar measurements of the atmospheric extinction coefficient profile,” Bulg. J. Phys. 17, 67–74 (1990).

Opt. Lett. (1)

Other (3)

J. H. Pollard, A Handbook of Numerical and Statistical Techniques (Cambridge U. Press, Cambridge, Mass., 1977), Chaps. 6–8.
[CrossRef]

I. V. Samokhvalov, ed., Spektroskopicheskiye Metodi Zondirovaniya Atmosfery (Spectroscopic Methods of Atmospheric Remote Sensing) (Nauka, Novosibirsk, 1985), pp. 30–39.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, “Optical properties of the atmosphere,” Rep. AFCRL-71-0279, Environmental Research Papers 354 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1971), pp. 8–10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Numerical experiment: the model extinction coefficient (dashed curve), and the determined log-derivative extinction coefficient, derived with a twofold sliding average for the extinction coefficient (solid curve). (b) Numerical experiment: the model extinction coefficient (dashed curve) and the determined log-derivative extinction coefficient, derived with a tenfold sliding average for the extinction coefficient (solid curve).

Fig. 2
Fig. 2

Numerical experiment: the model extinction coefficient (dashed curve) and the derived Klett extinction coefficient (solid curve).

Fig. 3
Fig. 3

(a) Numerical experiment: the rotational Raman backscatter normalized S function [S(H) − S(H0)] without additive noise (dashed curve) and with additive noise (solid curve). Numerical experiment: the elastic backscatter normalized S function [S(H) − S(H0)] without additive noise (dashed curve) and with additive noise (solid curve).

Fig. 4
Fig. 4

Numerical experiment: log-derivative extinction coefficient and model extinction coefficient regression line. The data from Fig. 1(a) are used for the analysis.

Fig. 5
Fig. 5

Numerical experiment: log-derivative extinction coefficient and Klett extinction coefficient regression line. The values for the log-derivative extinction coefficient are those from Fig. 1(a) and those for the Klett extinction coefficient are from Fig. 2.

Fig. 6
Fig. 6

Profiles made on 20 October 1988 for the Klett extinction coefficient (dashed curve) and for the log-derivative extinction coefficient (solid curve). The log-derivative extinction is twofold averaged.

Fig. 7
Fig. 7

Profiles made on 24 October 1988 for the Klett extinction coefficient (dashed curve) and for the log-derivative extinction coefficient (solid curve). The log-derivative extinction is twofold averaged.

Fig. 8
Fig. 8

Log-derivative extinction coefficient and Klett extinction coefficient regression line for the lidar measurement made on 20 October 1988.

Fig. 9
Fig. 9

Log-derivative extinction coefficient and Klett extinction coefficient regression line for the lidar measurement made on 24 October 1988.

Tables (1)

Tables Icon

Table 1 Characteristics of the Numerical Experiments and the Lidar Observation Linear Regression Linesa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α ( H ) = 1 2 Δ H { ln P ( H ) P ( H + Δ H ) - ln σ [ T ( H ) ] σ [ T ( H + Δ H ) ] - ln n ( H ) n ( H + Δ H ) - 2 ln H + Δ H H ,
S RRS ( H ) - S RRS ( H 0 ) = ln { σ [ T ( H ) ] n ( H ) σ [ T ( H 0 ) ] n ( H 0 ) } - 2 H 0 H α m ( h ) d h .
S E ( H ) - S E ( H 0 ) = ln α m ( H ) α m ( H 0 ) - 2 H 0 H α m ( h ) d h .
[ S N ( H ) - S N ( H 0 ) ] = S ( H ) - S ( H 0 ) + δ P min [ 1 + 1 ( H 0 / H ) { exp [ S ( H ) - S ( H 0 ) ] } ] ,

Metrics