Abstract

A Monte Carlo model of the behavior of photons in a reflective tube absorption meter has been developed and used to investigate how well such a meter can measure the absorption coefficient in waters of different optical types. The apparent, i.e., measured, absorption coefficient (am) is always greater than the true absorption coefficient (a). The ratio am/a increases linearly with the ratio of scattering to absorption (b/a) at a rate that depends on the scattering phase function of the water. The excess attenuation is mainly due to the failure of forward-scattered photons to undergo reflection at the cylinder wall. To achieve the highest accuracy possible with the meter, one must maximize the reflectivity and detector acceptance angle. Performance is also improved by increasing the cylinder diameter.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939).
    [CrossRef]
  2. J. R. V. Zaneveld, R. Bartz, “Beam attenuation and absorption meters,” in Ocean Optics VII, M. A. Blizard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.489, 318–324 (1984).
    [CrossRef]
  3. J. R. V. Zaneveld, R. Bartz, J. C. Kitchen, “A reflective-tube absorption meter,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 124–136 (1990).
  4. J. T. O. Kirk, “A Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters,” Aust. J. Mar. Freshwater Res. 32, 517–532 (1981).
    [CrossRef]
  5. Handbook of Physics and Chemistry, 48th ed. (Chemical Rubber Company, Cleveland, Ohio, 1967), p. E160.
  6. N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976), p. 23.
  7. T. J. Petzold, Volume Scattering Functions for Selected Waters, SIO Ref. 72–78 (Scripps Institution of Oceanography, San Diego, Calif., 1972).
  8. J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
    [CrossRef]
  9. R. T. Swimm, Yiming Xiao, M. Bass, “Calorimetric study of optical absorption of Suprasil W-1 fused quartz at visible, near-IR and near-UV wavelengths,” Appl. Opt. 24, 322–323 (1985).
    [CrossRef] [PubMed]
  10. M. J. Borgerson, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 373–385 (1990).

1991 (1)

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
[CrossRef]

1985 (1)

1981 (1)

J. T. O. Kirk, “A Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters,” Aust. J. Mar. Freshwater Res. 32, 517–532 (1981).
[CrossRef]

1939 (1)

Bartz, R.

J. R. V. Zaneveld, R. Bartz, “Beam attenuation and absorption meters,” in Ocean Optics VII, M. A. Blizard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.489, 318–324 (1984).
[CrossRef]

J. R. V. Zaneveld, R. Bartz, J. C. Kitchen, “A reflective-tube absorption meter,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 124–136 (1990).

M. J. Borgerson, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 373–385 (1990).

Bass, M.

Borgerson, M. J.

M. J. Borgerson, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 373–385 (1990).

Clarke, G. L.

James, H. R.

Jerlov, N. G.

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976), p. 23.

Kirk, J. T. O.

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
[CrossRef]

J. T. O. Kirk, “A Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters,” Aust. J. Mar. Freshwater Res. 32, 517–532 (1981).
[CrossRef]

Kitchen, J. C.

M. J. Borgerson, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 373–385 (1990).

J. R. V. Zaneveld, R. Bartz, J. C. Kitchen, “A reflective-tube absorption meter,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 124–136 (1990).

Petzold, T. J.

T. J. Petzold, Volume Scattering Functions for Selected Waters, SIO Ref. 72–78 (Scripps Institution of Oceanography, San Diego, Calif., 1972).

Swimm, R. T.

Xiao, Yiming

Zaneveld, J. R. V.

M. J. Borgerson, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 373–385 (1990).

J. R. V. Zaneveld, R. Bartz, “Beam attenuation and absorption meters,” in Ocean Optics VII, M. A. Blizard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.489, 318–324 (1984).
[CrossRef]

J. R. V. Zaneveld, R. Bartz, J. C. Kitchen, “A reflective-tube absorption meter,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 124–136 (1990).

Appl. Opt. (1)

Aust. J. Mar. Freshwater Res. (1)

J. T. O. Kirk, “A Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters,” Aust. J. Mar. Freshwater Res. 32, 517–532 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

Limnol. Oceanogr. (1)

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
[CrossRef]

Other (6)

J. R. V. Zaneveld, R. Bartz, “Beam attenuation and absorption meters,” in Ocean Optics VII, M. A. Blizard, ed., Proc. Soc. Photo-Opt. Instrum. Eng.489, 318–324 (1984).
[CrossRef]

J. R. V. Zaneveld, R. Bartz, J. C. Kitchen, “A reflective-tube absorption meter,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 124–136 (1990).

M. J. Borgerson, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1302, 373–385 (1990).

Handbook of Physics and Chemistry, 48th ed. (Chemical Rubber Company, Cleveland, Ohio, 1967), p. E160.

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976), p. 23.

T. J. Petzold, Volume Scattering Functions for Selected Waters, SIO Ref. 72–78 (Scripps Institution of Oceanography, San Diego, Calif., 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Ratio of the measured to the true absorption coefficient (am/a) as a function of the scattering–absorption ratio (b/a); a = 0.2 m−1, ∊ = 70°, reflectivity = 0.94. Phase functions: clear oceanic, ○; turbid coastal, ●.

Fig. 2
Fig. 2

Ratio of the measured to the true absorption coefficient (am/a) as a function of the acceptance angle of the detector; a = 0.1 m−1, b = 0.4 m−1, reflectivity = 0.94 (San Diego phase function).

Fig. 3
Fig. 3

Ratio of the measured to the true absorption coefficient (am/a) as a function of the reflectivity of the wall at two different detector angles ∊; a = 0.1 m−1, b = 0.4 m−1 (San Diego phase function).

Fig. 4
Fig. 4

Change in average path length of detected photons through the water as a function of thickness of the quartz cylinder wall; a = 0.1 m−1, b = 0.4 m−1, reflectivity = 1.00, acceptance angle = 180° (San Diego phase function).

Fig. 5
Fig. 5

Ratio of the measured to the true absorption coefficient (am/a) as a function of the cylinder diameter. The beam diameter in each case is 1.4 mm less than the corresponding tube diameter (⦵) or is constant at 10 mm (●); a = 0.1 m−1, b = 0.4 m−1, ∊ = 180°, reflectivity = 0.94 (San Diego phase function).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a m = ( 1 / z c ) ln ( P 0 / P ) ,
a m = a + w [ β ˜ ( θ ) ] b ,

Metrics