Abstract

Circular hollow waveguides with an interior silver layer and an inner coating of zinc selenide are fabricated. The fabrication process for rf sputtering of zinc-selenide and silver, electroplating of nickel, and etching of a polyimide mandrel is described in detail. As a result of the measurements of transmission losses, the waveguides show a remarkably low-loss property when they are bent. Further, output beam profiles of the straight and the bent waveguide are investigated, and it is shown that the waveguide with a smaller diameter exhibits a well-shaped beam profile without sacrificing the low-loss property.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
    [CrossRef]
  2. T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
    [CrossRef]
  3. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular hollow waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  4. S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-core silica waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
    [CrossRef]
  5. J. A. Harrington, C. C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
    [CrossRef] [PubMed]
  6. M. B. Levy, K. D. Laakmann, “Flexible waveguide for CO2 laser surgery,” in Optical and Laser Technology in Medicine, R. J. Landry, D. Sliney, R. Scott, eds., Proc. Soc. Photo-Opt. Instrum. Eng.605, 57–58 (1986).
  7. A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
    [CrossRef]
  8. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [CrossRef] [PubMed]
  9. H. Machida, H. Ishikawa, M. Miyagi, “Low-loss lead fluoride-coated square waveguides for CO2 laser light transmission,” Electron. Lett. 27, 2068–2070 (1991); A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120.
    [CrossRef] [PubMed]
  10. M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
    [CrossRef]
  11. S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
    [CrossRef]
  12. Y. Matsuura, M. Miyagi, A. Hongo, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
    [CrossRef]
  13. R. A. Dine-Hert, W. W. Wright, “Reaction of hydrazine hydrate with polyimide,” Chem. Ind. 86, 1565–1566 (1967).
  14. A. Saiki, K. Mukai, T. Okubo, S. Harada, “Fine pattern technology for multilevel metallization with PIQ insulation,” Trans. Inst. Electron. Inform. Commun. Eng. J63-C, 586–592 (1980).
  15. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  16. S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).
  17. T. Arai, M. Kikuchi, M. Saito, M. Takizawa, “Power transmission capacity of As-S glass fiber on CO laser delivery,” J. Appl. Phys. 63, 4359–4364 (1988).
    [CrossRef]
  18. Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–2214 (1990).
    [CrossRef] [PubMed]
  19. D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
    [CrossRef]

1991 (2)

H. Machida, H. Ishikawa, M. Miyagi, “Low-loss lead fluoride-coated square waveguides for CO2 laser light transmission,” Electron. Lett. 27, 2068–2070 (1991); A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120.
[CrossRef] [PubMed]

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

1990 (5)

Y. Matsuura, M. Miyagi, A. Hongo, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

J. A. Harrington, C. C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
[CrossRef] [PubMed]

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–2214 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (2)

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

T. Arai, M. Kikuchi, M. Saito, M. Takizawa, “Power transmission capacity of As-S glass fiber on CO laser delivery,” J. Appl. Phys. 63, 4359–4364 (1988).
[CrossRef]

1987 (1)

S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-core silica waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
[CrossRef]

1984 (2)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular hollow waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

1981 (1)

T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
[CrossRef]

1980 (2)

E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
[CrossRef]

A. Saiki, K. Mukai, T. Okubo, S. Harada, “Fine pattern technology for multilevel metallization with PIQ insulation,” Trans. Inst. Electron. Inform. Commun. Eng. J63-C, 586–592 (1980).

1977 (1)

D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
[CrossRef]

1967 (1)

R. A. Dine-Hert, W. W. Wright, “Reaction of hydrazine hydrate with polyimide,” Chem. Ind. 86, 1565–1566 (1967).

Abe, S.

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

Alimpiev, S. S.

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

Arai, T.

T. Arai, M. Kikuchi, M. Saito, M. Takizawa, “Power transmission capacity of As-S glass fiber on CO laser delivery,” J. Appl. Phys. 63, 4359–4364 (1988).
[CrossRef]

Artjushenko, V. G.

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

Bass, M.

E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
[CrossRef]

Butvina, L. N.

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

Croitoru, N.

Devereux, R. W. J.

S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-core silica waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
[CrossRef]

Dianov, E. M.

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

Dine-Hert, R. A.

R. A. Dine-Hert, W. W. Wright, “Reaction of hydrazine hydrate with polyimide,” Chem. Ind. 86, 1565–1566 (1967).

Dror, J.

Gannot, I.

Garmire, E.

E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
[CrossRef]

Gorton, E. K.

D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
[CrossRef]

Gregory, C. C.

Hall, D. R.

D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
[CrossRef]

Harada, K.

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

Harada, S.

A. Saiki, K. Mukai, T. Okubo, S. Harada, “Fine pattern technology for multilevel metallization with PIQ insulation,” Trans. Inst. Electron. Inform. Commun. Eng. J63-C, 586–592 (1980).

Harrington, J. A.

Hidaka, T.

T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
[CrossRef]

Hongo, A.

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matsuura, M. Miyagi, A. Hongo, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–2214 (1990).
[CrossRef] [PubMed]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

Ishikawa, H.

H. Machida, H. Ishikawa, M. Miyagi, “Low-loss lead fluoride-coated square waveguides for CO2 laser light transmission,” Electron. Lett. 27, 2068–2070 (1991); A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120.
[CrossRef] [PubMed]

Jenkins, R. M.

S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-core silica waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
[CrossRef]

D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
[CrossRef]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular hollow waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

Kikuchi, M.

T. Arai, M. Kikuchi, M. Saito, M. Takizawa, “Power transmission capacity of As-S glass fiber on CO laser delivery,” J. Appl. Phys. 63, 4359–4364 (1988).
[CrossRef]

Kolesnikov, Yu. G.

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

Konov, V. I.

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

Laakmann, K. D.

M. B. Levy, K. D. Laakmann, “Flexible waveguide for CO2 laser surgery,” in Optical and Laser Technology in Medicine, R. J. Landry, D. Sliney, R. Scott, eds., Proc. Soc. Photo-Opt. Instrum. Eng.605, 57–58 (1986).

Levy, M. B.

M. B. Levy, K. D. Laakmann, “Flexible waveguide for CO2 laser surgery,” in Optical and Laser Technology in Medicine, R. J. Landry, D. Sliney, R. Scott, eds., Proc. Soc. Photo-Opt. Instrum. Eng.605, 57–58 (1986).

Machida, H.

H. Machida, H. Ishikawa, M. Miyagi, “Low-loss lead fluoride-coated square waveguides for CO2 laser light transmission,” Electron. Lett. 27, 2068–2070 (1991); A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120.
[CrossRef] [PubMed]

Matsuura, Y.

Y. Matsuura, M. Miyagi, A. Hongo, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–2214 (1990).
[CrossRef] [PubMed]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

McMahon, T.

E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
[CrossRef]

Mirakjan, M. M.

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

Miyagi, M.

H. Machida, H. Ishikawa, M. Miyagi, “Low-loss lead fluoride-coated square waveguides for CO2 laser light transmission,” Electron. Lett. 27, 2068–2070 (1991); A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120.
[CrossRef] [PubMed]

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

Y. Matsuura, M. Miyagi, A. Hongo, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–2214 (1990).
[CrossRef] [PubMed]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular hollow waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

Morikawa, T.

T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
[CrossRef]

Morosawa, K.

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Mukai, K.

A. Saiki, K. Mukai, T. Okubo, S. Harada, “Fine pattern technology for multilevel metallization with PIQ insulation,” Trans. Inst. Electron. Inform. Commun. Eng. J63-C, 586–592 (1980).

Nabatov, A. O.

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

Nikiforov, S. M.

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

Okubo, T.

A. Saiki, K. Mukai, T. Okubo, S. Harada, “Fine pattern technology for multilevel metallization with PIQ insulation,” Trans. Inst. Electron. Inform. Commun. Eng. J63-C, 586–592 (1980).

Saiki, A.

A. Saiki, K. Mukai, T. Okubo, S. Harada, “Fine pattern technology for multilevel metallization with PIQ insulation,” Trans. Inst. Electron. Inform. Commun. Eng. J63-C, 586–592 (1980).

Saito, M.

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

T. Arai, M. Kikuchi, M. Saito, M. Takizawa, “Power transmission capacity of As-S glass fiber on CO laser delivery,” J. Appl. Phys. 63, 4359–4364 (1988).
[CrossRef]

Shimada, J.

T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
[CrossRef]

Shiota, T.

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Takizawa, M.

T. Arai, M. Kikuchi, M. Saito, M. Takizawa, “Power transmission capacity of As-S glass fiber on CO laser delivery,” J. Appl. Phys. 63, 4359–4364 (1988).
[CrossRef]

Vartapetov, S. K.

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

Wilson, S. J.

S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-core silica waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
[CrossRef]

Wright, W. W.

R. A. Dine-Hert, W. W. Wright, “Reaction of hydrazine hydrate with polyimide,” Chem. Ind. 86, 1565–1566 (1967).

Appl. Opt. (2)

Chem. Ind. (1)

R. A. Dine-Hert, W. W. Wright, “Reaction of hydrazine hydrate with polyimide,” Chem. Ind. 86, 1565–1566 (1967).

Electron. Lett. (1)

H. Machida, H. Ishikawa, M. Miyagi, “Low-loss lead fluoride-coated square waveguides for CO2 laser light transmission,” Electron. Lett. 27, 2068–2070 (1991); A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120.
[CrossRef] [PubMed]

IEEE J. Lightwave Technol. (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular hollow waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-core silica waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
[CrossRef]

E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

Int. J. Optelectronics (1)

S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).

J. Appl. Phys. (4)

T. Arai, M. Kikuchi, M. Saito, M. Takizawa, “Power transmission capacity of As-S glass fiber on CO laser delivery,” J. Appl. Phys. 63, 4359–4364 (1988).
[CrossRef]

D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977).
[CrossRef]

Y. Matsuura, M. Miyagi, A. Hongo, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Trans. Inst. Electron. Inform. Commun. Eng. (1)

A. Saiki, K. Mukai, T. Okubo, S. Harada, “Fine pattern technology for multilevel metallization with PIQ insulation,” Trans. Inst. Electron. Inform. Commun. Eng. J63-C, 586–592 (1980).

Other (1)

M. B. Levy, K. D. Laakmann, “Flexible waveguide for CO2 laser surgery,” in Optical and Laser Technology in Medicine, R. J. Landry, D. Sliney, R. Scott, eds., Proc. Soc. Photo-Opt. Instrum. Eng.605, 57–58 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Attenuation spectra of a ZnSe-coated Ag waveguide and a Ge-coated Ag waveguide [1-mm inside diameter (i.d.) × 1-m length]. Sharp peaks at 4.3 μm are caused by absorption of the CO2 included in the air.

Fig. 2
Fig. 2

Bending losses of ZnSe-coated Ag and Ge-coated Ag waveguides (1.5-mm i.d. × 1-m length) when the polarization is parallel to the bending plane.

Fig. 3
Fig. 3

Bending losses of ZnSe-coated Ag and Ge-coated Ag waveguides (1.5-mm i.d. × 1-m length). The polarization is perpendicular to the bending plane.

Fig. 4
Fig. 4

Bending losses of ZnSe-coated Ag waveguide (1-mm i.d. × 1-m length). E||, and E correspond to the parallel and the perpendicular polarizations, respectively.

Fig. 5
Fig. 5

Beam profile of the incident light to the waveguides.

Fig. 6
Fig. 6

Beam profiles of ZnSe-coated Ag waveguides (1.5-mm i.d. × 1-m length): (a) straight and (b) bent waveguides with a bending radius of 40 cm.

Fig. 7
Fig. 7

Beam profiles of ZnSe-coated Ag waveguides (1.0-mm i.d. × 1-m length): (a) straight and (b) bent waveguides with a bending radius of 40 cm.

Tables (1)

Tables Icon

Table 1 Fabrication Process of ZnSe-Coated Ag Waveguides

Metrics