Abstract

Measurements of noise levels with semiconductor lasers and long lengths of polarization-preserving fiber, as used in typical linear modulator systems, show noise levels that are ~ 10 dB above thermal noise because of laser phase-to-intensity noise conversion. Data are presented for several launching angles into both polarization-preserving and polarizing fiber. There is good agreement with theory for the variation in noise with an output analyzer angle. To reduce the noise either a single frequency source must be used or the polarization-preserving fiber must be replaced by a conventional single-mode fiber.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bulmer, “Sensitive, highly linear lithium niobate interferometers for electromagnetic field sensing,” Appl. Phys. Lett. 53, 2368–2370 (1988).
    [CrossRef]
  2. C. H. Bulmer, A. D. Kersey, M. A. Davis, “Interrogation of an integrated optic modulator over a low-birefringence fiber using polarization tracking,” IEEE Photon. Technol. Lett. 1, 35–37 (1989).
    [CrossRef]
  3. R. H. Buckley, Hughes Aircraft Co., Rancho Santa Margarita, Calif. 92688 (personal communication, 1990).
  4. H. Mandelberg, Laboratory for Physical Sciences, College Park, Md. 20740 (personal communication, 1990).
  5. M. Kruger, Laboratory for Physical Sciences, College Park, Md. 20740 (personal communication, 1990).
  6. C. Lin, Optoelectronic Technology and Lightwaue Communications Systems (Van Nostrand Reinhold, New York, 1989), p. 618.
  7. B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” IEEE J. Lightwave Technol. LT-4, 1704–1710 (1986).
    [CrossRef]
  8. W. K. Burns, R. P. Moeller, C. H. Bulmer, A. S. Greenblatt, “Depolarized source for fiber-optic applications,” Opt. Lett. 16, 381–383 (1991).
    [CrossRef] [PubMed]

1991 (1)

1989 (1)

C. H. Bulmer, A. D. Kersey, M. A. Davis, “Interrogation of an integrated optic modulator over a low-birefringence fiber using polarization tracking,” IEEE Photon. Technol. Lett. 1, 35–37 (1989).
[CrossRef]

1988 (1)

C. H. Bulmer, “Sensitive, highly linear lithium niobate interferometers for electromagnetic field sensing,” Appl. Phys. Lett. 53, 2368–2370 (1988).
[CrossRef]

1986 (1)

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” IEEE J. Lightwave Technol. LT-4, 1704–1710 (1986).
[CrossRef]

Buckley, R. H.

R. H. Buckley, Hughes Aircraft Co., Rancho Santa Margarita, Calif. 92688 (personal communication, 1990).

Bulmer, C. H.

W. K. Burns, R. P. Moeller, C. H. Bulmer, A. S. Greenblatt, “Depolarized source for fiber-optic applications,” Opt. Lett. 16, 381–383 (1991).
[CrossRef] [PubMed]

C. H. Bulmer, A. D. Kersey, M. A. Davis, “Interrogation of an integrated optic modulator over a low-birefringence fiber using polarization tracking,” IEEE Photon. Technol. Lett. 1, 35–37 (1989).
[CrossRef]

C. H. Bulmer, “Sensitive, highly linear lithium niobate interferometers for electromagnetic field sensing,” Appl. Phys. Lett. 53, 2368–2370 (1988).
[CrossRef]

Burns, W. K.

Davis, M. A.

C. H. Bulmer, A. D. Kersey, M. A. Davis, “Interrogation of an integrated optic modulator over a low-birefringence fiber using polarization tracking,” IEEE Photon. Technol. Lett. 1, 35–37 (1989).
[CrossRef]

Greenblatt, A. S.

Kersey, A. D.

C. H. Bulmer, A. D. Kersey, M. A. Davis, “Interrogation of an integrated optic modulator over a low-birefringence fiber using polarization tracking,” IEEE Photon. Technol. Lett. 1, 35–37 (1989).
[CrossRef]

Kruger, M.

M. Kruger, Laboratory for Physical Sciences, College Park, Md. 20740 (personal communication, 1990).

Lin, C.

C. Lin, Optoelectronic Technology and Lightwaue Communications Systems (Van Nostrand Reinhold, New York, 1989), p. 618.

Mandelberg, H.

H. Mandelberg, Laboratory for Physical Sciences, College Park, Md. 20740 (personal communication, 1990).

Moeller, R. P.

Moslehi, B.

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” IEEE J. Lightwave Technol. LT-4, 1704–1710 (1986).
[CrossRef]

Appl. Phys. Lett. (1)

C. H. Bulmer, “Sensitive, highly linear lithium niobate interferometers for electromagnetic field sensing,” Appl. Phys. Lett. 53, 2368–2370 (1988).
[CrossRef]

IEEE J. Lightwave Technol. (1)

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” IEEE J. Lightwave Technol. LT-4, 1704–1710 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. H. Bulmer, A. D. Kersey, M. A. Davis, “Interrogation of an integrated optic modulator over a low-birefringence fiber using polarization tracking,” IEEE Photon. Technol. Lett. 1, 35–37 (1989).
[CrossRef]

Opt. Lett. (1)

Other (4)

R. H. Buckley, Hughes Aircraft Co., Rancho Santa Margarita, Calif. 92688 (personal communication, 1990).

H. Mandelberg, Laboratory for Physical Sciences, College Park, Md. 20740 (personal communication, 1990).

M. Kruger, Laboratory for Physical Sciences, College Park, Md. 20740 (personal communication, 1990).

C. Lin, Optoelectronic Technology and Lightwaue Communications Systems (Van Nostrand Reinhold, New York, 1989), p. 618.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement for performing noise measurements with a PPF.

Fig. 2
Fig. 2

Noise as a function of the output analyzer angle for launching from a Stantel pigtailed laser on axis (θin = 0°) into a 166-m PPF (circles) and a 100-m polarizing fiber (squares).

Fig. 3
Fig. 3

Noise as a function of the output analyzer angle for launching from a Stantel pigtailed laser at θin = 45° into a 166-m PPF. The solid curve corresponds to the theory [relation (5)], the triangles correspond to experimental data with a 20-dB polarization extinction ratio, and the circles corrspond to data with a 30-dB extinction ratio.

Fig. 4
Fig. 4

Noise as a function of an output analyzer angle for launching from an OKI pigtailed laser at θin = 45° into a 166-m PPF.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d Φ = n L Δ ω c ,
I = I in 2 ( 1 + cos Δ Φ ) ,
d I = I in 2 sin Δ Φ d ( Δ Φ ) ,
d ( Δ Φ ) = ( n Δ L 12 Δ ω ) / c ,
d I I in 2 sin ( 2 θ in ) sin ( 2 θ out ) sin ( Δ β L ) Δ ω Δ n eff L / c ,
Δ β = ( ω Δ n eff ) / c ,
Δ n eff = n eff a - n eff b ,

Metrics