Abstract

Suspensions of wire helices are absorbing at microwave frequencies. Although such suspensions are chiral, this may be accidental rather than essential for absorption in coatings. Nonchiral suspensions of connected loop arrays behave similarly to suspensions of helices.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Eftimiu, L. Pearson, “Guided electromagnetic waves in chiral media,” Radio Sci. 24, 351–359 (1989).
    [CrossRef]
  2. S. Bassiri, C. H. Papas, N. Engheta, “Electromagnetic wave propagation through a dielectric–chiral interface and through a chiral slab,” J. Opt. Soc. Am. A 5, 1450–1459 (1988).
    [CrossRef]
  3. D. Jaggard, N. Engheta, M. Kowarz, P. Pelet, J. Liu, Y. Kim, “Periodic chiral structures,” IEEE Trans. Antennas Propag. 37, 1447–1452 (1989).
    [CrossRef]
  4. A. Lakhtakia, V. K. Varadan, V. V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media (Springer-Verlag, Berlin, 1989).
  5. A. Lakhtakia, ed., Selected Papers on Natural Optical Activity (SPIE Optical Engineering, Bellingham, Wash., 1990).
  6. T. Guire, V. V. Varadan, V. K. Varadan, “Influence of chirality on the reflection of EM waves by planar dielectric slabs,” IEEE Trans. Electromagn. Compat. 32, 300–303 (1990).
    [CrossRef]
  7. M. Kluskens, E. Newman, “Scattering by a chiral cylinder,” IEEE Trans. Antennas Propag. 39, 91–96 (1991).
    [CrossRef]
  8. K. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarisation der elektromagnetischen Wellen,” Ann. Phys. 63, 621–644 (1920).
    [CrossRef]
  9. I. Tinoco, M. Freeman, “The optical activity of oriented copper helices. I. Experimental,” J. Phys. Chem. 61, 1196–1200 (1957).
    [CrossRef]
  10. A. Bhattacharyya, D. Sengupta, Radar Cross Section Analysis and Control (Artech, Boston, Mass., 1991).
  11. D. Jaggard, N. Engheta, “Chirosorb™ as an invisible medium,” Electron. Lett. 25, 173–174 (1989).
    [CrossRef]
  12. V. K. Varadan, V. V. Varadan, “Electromagnetic Shielding and Absorptive Materials,” U.S. patent4,948,922 (14August1990).
  13. D. Jaggard, N. Engheta, “Reply to Monzon,” Electron. Lett. 25, 1060–1061 (1989).
    [CrossRef]
  14. J. Monzon, “Comment on Chirosorb™ as an invisible medium,” Electron. Lett. 25, 1060 (1989).
    [CrossRef]
  15. H. Musal, H. Hahn, “Thin-layer electromagnetic absorber design,” IEEE Trans. Magn. 25, 3851–3853 (1989).
    [CrossRef]
  16. V. K. Varadan, V. V. Varadan, A. Lakhtakia, “On the possibility of designing anti-reflection coatings using chiral composites,” J. Wave Mat. Inter. 2, 71–81 (1987).
  17. C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett. 29, 458–462 (1974).
    [CrossRef]
  18. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
  19. R. Ro, “Determination of the electromagnetic properties of chiral composites using normal incidence measurements,” Ph.D. dissertation (The Pennsylvania State University, University Park, Pennsylvania, 1991).
  20. J. H. Richmond, “Computer program for thin-wire structures in a homogeneous conducting medium,” Report 2902-12 (Electroscience Laboratory, Ohio State University, Columbus, Ohio, 1973).
  21. W. T. Doyle, “The Clausius–Mossotti problem for cubic arrays of spheres,” J. Appl. Phys. 49, 795–797 (1978).
    [CrossRef]
  22. A. Lakhtakia, “Recent contributions to classical electromagnetic theory of chiral media: what next?” Spec. Sci. Tech. 14, 2–17 (1991).

1991 (2)

M. Kluskens, E. Newman, “Scattering by a chiral cylinder,” IEEE Trans. Antennas Propag. 39, 91–96 (1991).
[CrossRef]

A. Lakhtakia, “Recent contributions to classical electromagnetic theory of chiral media: what next?” Spec. Sci. Tech. 14, 2–17 (1991).

1990 (1)

T. Guire, V. V. Varadan, V. K. Varadan, “Influence of chirality on the reflection of EM waves by planar dielectric slabs,” IEEE Trans. Electromagn. Compat. 32, 300–303 (1990).
[CrossRef]

1989 (6)

D. Jaggard, N. Engheta, M. Kowarz, P. Pelet, J. Liu, Y. Kim, “Periodic chiral structures,” IEEE Trans. Antennas Propag. 37, 1447–1452 (1989).
[CrossRef]

D. Jaggard, N. Engheta, “Chirosorb™ as an invisible medium,” Electron. Lett. 25, 173–174 (1989).
[CrossRef]

D. Jaggard, N. Engheta, “Reply to Monzon,” Electron. Lett. 25, 1060–1061 (1989).
[CrossRef]

J. Monzon, “Comment on Chirosorb™ as an invisible medium,” Electron. Lett. 25, 1060 (1989).
[CrossRef]

H. Musal, H. Hahn, “Thin-layer electromagnetic absorber design,” IEEE Trans. Magn. 25, 3851–3853 (1989).
[CrossRef]

C. Eftimiu, L. Pearson, “Guided electromagnetic waves in chiral media,” Radio Sci. 24, 351–359 (1989).
[CrossRef]

1988 (1)

1987 (1)

V. K. Varadan, V. V. Varadan, A. Lakhtakia, “On the possibility of designing anti-reflection coatings using chiral composites,” J. Wave Mat. Inter. 2, 71–81 (1987).

1978 (1)

W. T. Doyle, “The Clausius–Mossotti problem for cubic arrays of spheres,” J. Appl. Phys. 49, 795–797 (1978).
[CrossRef]

1974 (1)

C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett. 29, 458–462 (1974).
[CrossRef]

1957 (1)

I. Tinoco, M. Freeman, “The optical activity of oriented copper helices. I. Experimental,” J. Phys. Chem. 61, 1196–1200 (1957).
[CrossRef]

1920 (1)

K. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarisation der elektromagnetischen Wellen,” Ann. Phys. 63, 621–644 (1920).
[CrossRef]

Bassiri, S.

Bhattacharyya, A.

A. Bhattacharyya, D. Sengupta, Radar Cross Section Analysis and Control (Artech, Boston, Mass., 1991).

Bohren, C. F.

C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett. 29, 458–462 (1974).
[CrossRef]

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Doyle, W. T.

W. T. Doyle, “The Clausius–Mossotti problem for cubic arrays of spheres,” J. Appl. Phys. 49, 795–797 (1978).
[CrossRef]

Eftimiu, C.

C. Eftimiu, L. Pearson, “Guided electromagnetic waves in chiral media,” Radio Sci. 24, 351–359 (1989).
[CrossRef]

Engheta, N.

D. Jaggard, N. Engheta, M. Kowarz, P. Pelet, J. Liu, Y. Kim, “Periodic chiral structures,” IEEE Trans. Antennas Propag. 37, 1447–1452 (1989).
[CrossRef]

D. Jaggard, N. Engheta, “Reply to Monzon,” Electron. Lett. 25, 1060–1061 (1989).
[CrossRef]

D. Jaggard, N. Engheta, “Chirosorb™ as an invisible medium,” Electron. Lett. 25, 173–174 (1989).
[CrossRef]

S. Bassiri, C. H. Papas, N. Engheta, “Electromagnetic wave propagation through a dielectric–chiral interface and through a chiral slab,” J. Opt. Soc. Am. A 5, 1450–1459 (1988).
[CrossRef]

Freeman, M.

I. Tinoco, M. Freeman, “The optical activity of oriented copper helices. I. Experimental,” J. Phys. Chem. 61, 1196–1200 (1957).
[CrossRef]

Guire, T.

T. Guire, V. V. Varadan, V. K. Varadan, “Influence of chirality on the reflection of EM waves by planar dielectric slabs,” IEEE Trans. Electromagn. Compat. 32, 300–303 (1990).
[CrossRef]

Hahn, H.

H. Musal, H. Hahn, “Thin-layer electromagnetic absorber design,” IEEE Trans. Magn. 25, 3851–3853 (1989).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Jaggard, D.

D. Jaggard, N. Engheta, “Chirosorb™ as an invisible medium,” Electron. Lett. 25, 173–174 (1989).
[CrossRef]

D. Jaggard, N. Engheta, “Reply to Monzon,” Electron. Lett. 25, 1060–1061 (1989).
[CrossRef]

D. Jaggard, N. Engheta, M. Kowarz, P. Pelet, J. Liu, Y. Kim, “Periodic chiral structures,” IEEE Trans. Antennas Propag. 37, 1447–1452 (1989).
[CrossRef]

Kim, Y.

D. Jaggard, N. Engheta, M. Kowarz, P. Pelet, J. Liu, Y. Kim, “Periodic chiral structures,” IEEE Trans. Antennas Propag. 37, 1447–1452 (1989).
[CrossRef]

Kluskens, M.

M. Kluskens, E. Newman, “Scattering by a chiral cylinder,” IEEE Trans. Antennas Propag. 39, 91–96 (1991).
[CrossRef]

Kowarz, M.

D. Jaggard, N. Engheta, M. Kowarz, P. Pelet, J. Liu, Y. Kim, “Periodic chiral structures,” IEEE Trans. Antennas Propag. 37, 1447–1452 (1989).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, “Recent contributions to classical electromagnetic theory of chiral media: what next?” Spec. Sci. Tech. 14, 2–17 (1991).

V. K. Varadan, V. V. Varadan, A. Lakhtakia, “On the possibility of designing anti-reflection coatings using chiral composites,” J. Wave Mat. Inter. 2, 71–81 (1987).

A. Lakhtakia, V. K. Varadan, V. V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media (Springer-Verlag, Berlin, 1989).

Lindman, K.

K. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarisation der elektromagnetischen Wellen,” Ann. Phys. 63, 621–644 (1920).
[CrossRef]

Liu, J.

D. Jaggard, N. Engheta, M. Kowarz, P. Pelet, J. Liu, Y. Kim, “Periodic chiral structures,” IEEE Trans. Antennas Propag. 37, 1447–1452 (1989).
[CrossRef]

Monzon, J.

J. Monzon, “Comment on Chirosorb™ as an invisible medium,” Electron. Lett. 25, 1060 (1989).
[CrossRef]

Musal, H.

H. Musal, H. Hahn, “Thin-layer electromagnetic absorber design,” IEEE Trans. Magn. 25, 3851–3853 (1989).
[CrossRef]

Newman, E.

M. Kluskens, E. Newman, “Scattering by a chiral cylinder,” IEEE Trans. Antennas Propag. 39, 91–96 (1991).
[CrossRef]

Papas, C. H.

Pearson, L.

C. Eftimiu, L. Pearson, “Guided electromagnetic waves in chiral media,” Radio Sci. 24, 351–359 (1989).
[CrossRef]

Pelet, P.

D. Jaggard, N. Engheta, M. Kowarz, P. Pelet, J. Liu, Y. Kim, “Periodic chiral structures,” IEEE Trans. Antennas Propag. 37, 1447–1452 (1989).
[CrossRef]

Richmond, J. H.

J. H. Richmond, “Computer program for thin-wire structures in a homogeneous conducting medium,” Report 2902-12 (Electroscience Laboratory, Ohio State University, Columbus, Ohio, 1973).

Ro, R.

R. Ro, “Determination of the electromagnetic properties of chiral composites using normal incidence measurements,” Ph.D. dissertation (The Pennsylvania State University, University Park, Pennsylvania, 1991).

Sengupta, D.

A. Bhattacharyya, D. Sengupta, Radar Cross Section Analysis and Control (Artech, Boston, Mass., 1991).

Tinoco, I.

I. Tinoco, M. Freeman, “The optical activity of oriented copper helices. I. Experimental,” J. Phys. Chem. 61, 1196–1200 (1957).
[CrossRef]

Varadan, V. K.

T. Guire, V. V. Varadan, V. K. Varadan, “Influence of chirality on the reflection of EM waves by planar dielectric slabs,” IEEE Trans. Electromagn. Compat. 32, 300–303 (1990).
[CrossRef]

V. K. Varadan, V. V. Varadan, A. Lakhtakia, “On the possibility of designing anti-reflection coatings using chiral composites,” J. Wave Mat. Inter. 2, 71–81 (1987).

V. K. Varadan, V. V. Varadan, “Electromagnetic Shielding and Absorptive Materials,” U.S. patent4,948,922 (14August1990).

A. Lakhtakia, V. K. Varadan, V. V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media (Springer-Verlag, Berlin, 1989).

Varadan, V. V.

T. Guire, V. V. Varadan, V. K. Varadan, “Influence of chirality on the reflection of EM waves by planar dielectric slabs,” IEEE Trans. Electromagn. Compat. 32, 300–303 (1990).
[CrossRef]

V. K. Varadan, V. V. Varadan, A. Lakhtakia, “On the possibility of designing anti-reflection coatings using chiral composites,” J. Wave Mat. Inter. 2, 71–81 (1987).

V. K. Varadan, V. V. Varadan, “Electromagnetic Shielding and Absorptive Materials,” U.S. patent4,948,922 (14August1990).

A. Lakhtakia, V. K. Varadan, V. V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media (Springer-Verlag, Berlin, 1989).

Ann. Phys. (1)

K. Lindman, “Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarisation der elektromagnetischen Wellen,” Ann. Phys. 63, 621–644 (1920).
[CrossRef]

Chem. Phys. Lett. (1)

C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett. 29, 458–462 (1974).
[CrossRef]

Electron. Lett. (3)

D. Jaggard, N. Engheta, “Reply to Monzon,” Electron. Lett. 25, 1060–1061 (1989).
[CrossRef]

J. Monzon, “Comment on Chirosorb™ as an invisible medium,” Electron. Lett. 25, 1060 (1989).
[CrossRef]

D. Jaggard, N. Engheta, “Chirosorb™ as an invisible medium,” Electron. Lett. 25, 173–174 (1989).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

D. Jaggard, N. Engheta, M. Kowarz, P. Pelet, J. Liu, Y. Kim, “Periodic chiral structures,” IEEE Trans. Antennas Propag. 37, 1447–1452 (1989).
[CrossRef]

M. Kluskens, E. Newman, “Scattering by a chiral cylinder,” IEEE Trans. Antennas Propag. 39, 91–96 (1991).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

T. Guire, V. V. Varadan, V. K. Varadan, “Influence of chirality on the reflection of EM waves by planar dielectric slabs,” IEEE Trans. Electromagn. Compat. 32, 300–303 (1990).
[CrossRef]

IEEE Trans. Magn. (1)

H. Musal, H. Hahn, “Thin-layer electromagnetic absorber design,” IEEE Trans. Magn. 25, 3851–3853 (1989).
[CrossRef]

J. Appl. Phys. (1)

W. T. Doyle, “The Clausius–Mossotti problem for cubic arrays of spheres,” J. Appl. Phys. 49, 795–797 (1978).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

I. Tinoco, M. Freeman, “The optical activity of oriented copper helices. I. Experimental,” J. Phys. Chem. 61, 1196–1200 (1957).
[CrossRef]

J. Wave Mat. Inter. (1)

V. K. Varadan, V. V. Varadan, A. Lakhtakia, “On the possibility of designing anti-reflection coatings using chiral composites,” J. Wave Mat. Inter. 2, 71–81 (1987).

Radio Sci. (1)

C. Eftimiu, L. Pearson, “Guided electromagnetic waves in chiral media,” Radio Sci. 24, 351–359 (1989).
[CrossRef]

Spec. Sci. Tech. (1)

A. Lakhtakia, “Recent contributions to classical electromagnetic theory of chiral media: what next?” Spec. Sci. Tech. 14, 2–17 (1991).

Other (7)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

R. Ro, “Determination of the electromagnetic properties of chiral composites using normal incidence measurements,” Ph.D. dissertation (The Pennsylvania State University, University Park, Pennsylvania, 1991).

J. H. Richmond, “Computer program for thin-wire structures in a homogeneous conducting medium,” Report 2902-12 (Electroscience Laboratory, Ohio State University, Columbus, Ohio, 1973).

A. Bhattacharyya, D. Sengupta, Radar Cross Section Analysis and Control (Artech, Boston, Mass., 1991).

V. K. Varadan, V. V. Varadan, “Electromagnetic Shielding and Absorptive Materials,” U.S. patent4,948,922 (14August1990).

A. Lakhtakia, V. K. Varadan, V. V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media (Springer-Verlag, Berlin, 1989).

A. Lakhtakia, ed., Selected Papers on Natural Optical Activity (SPIE Optical Engineering, Bellingham, Wash., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Method of moments calculations of the far-field tumble-averaged scattering amplitude X in the forward (θ = 0°) direction for a single left-handed helix of the same dimensions and composition used in Ro’s measurements.19

Fig. 2
Fig. 2

Complex chirality parameter β for a slab with 0.8% wire volume fraction of helical inclusions. Measured data are from Ro19; computed data are from Eqs. (6)(8) and use the results shown in Fig. 1.

Fig. 3
Fig. 3

Complex chirality parameter β for a slab with 1.6% wire volume fraction of helical inclusions. Measured data are from Ro19; computed data are from Eqs. (6)(8) and use the results shown in Fig. 1.

Fig. 4
Fig. 4

Complex refractive indices for media composed of wire inclusions in free space (0.8% wire volume fraction). The helices are chiral whereas the loop arrays are not. The connected loop array was chosen to be as close in size as possible to that of the helix.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D = E + β × E ,             B = μ H + μ β × H ,
k L = ω μ 1 - β ω μ ,             k R = ω μ 1 + β ω μ .
r = r 0 - exp ( i 2 k ¯ h ) 1 - r 0 exp ( i 2 k ¯ h ) ,
k ¯ = ½ ( k L + k R ) ,
r 0 = ( 0 / μ 0 ) 1 / 2 - ( / μ ) 1 / 2 ( 0 / μ 0 ) 1 / 2 + ( / μ ) 1 / 2 .
k L = k [ 1 + i 2 π N k 3 ( X · e ^ x ) θ = 0 + 2 π N k 3 ( X · e ^ y ) θ = 0 ] ,
k R = k [ 1 + i 2 π N k 3 ( X · e ^ x ) θ = 0 - 2 π N k 3 ( X · e ^ y ) θ = 0 ] ,
β = 1 2 ( 1 k R - 1 k L ) .

Metrics