Abstract

A theoretical consideration is made for transverse-electric polarization vectors of a transmitted field in an optically absorbing sample to derive a fluorescence intensity formula as a function of the absorption index of the sample as well as incident and observation angles in total-internal-reflection fluorescence spectroscopy. These equations are experimentally confirmed. It is shown that the angular spectrum of fluorescence intensity is the Laplace transformation of the effective penetration depth, even for the absorbing sample. High resolution of the depth profile is expected for an absorbing sample compared with a nonabsorbing one.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific, New York, 1967).
  2. E. D. Palik, R. T. Holm, “Internal-reflection-spectroscopy studies of thin films and surfaces,” Opt. Eng. 17, 512–524 (1978).
  3. C. K. Carniglia, L. Mandel, K. H. Drexhage, “Absorption and emission of evanescent photons,” J. Opt. Soc. Am. 62, 479–486 (1972).
    [CrossRef]
  4. C. Allain, D. Ausserre, F. Rondelez, “Direct optical observation of interfacial depletion layers in polymer solutions,” Phys. Rev. Lett. 49, 1694–1697 (1982).
    [CrossRef]
  5. E. Lee, R. E. Benner, J. B. Fenn, R. K. Chang, “Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitations,” Appl. Opt. 18, 862–868 (1979).
    [CrossRef]
  6. M. Toriumi, M. Yanagimachi, H. Masuhara, “Dynamics in the surface layer of the polymer films,” in Dynamics in Small Confining Systems, J.Drake Drake, J.Klafter Klafter, R. Kopelman, eds. (Materials Research Society, Pittsburgh, Pa., 1990), pp. 133–136.
  7. M. Yanagimachi, M. Toriumi, M. Masuhara, “Selective incorporation and aggregation of pyrene in a segmented polyurethaneurea film as revealed by picosecond total internal reflection fluorescence spectroscopy,” Chem. Mater. 3, 413–418 (1991).
    [CrossRef]
  8. G. Muller, K. Abraham, M. Schaldach, “Quantitative ATR spectroscopy: some basic considerations,” Appl. Opt. 20, 1182–1190 (1981).
    [CrossRef] [PubMed]
  9. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).
  10. A. Itaya, T. Yamada, K. Tokuda, H. Masuhara, “Interfacial characteristics of poly (methyl methacrylate) film: aggregation of pyrene and micropolarity revealed by time-resolved total internal reflection fluorescence spectroscopy,” Polymer J. 22, 697–704 (1990).
    [CrossRef]
  11. M. Toriumi, M. Yanagimachi, H. Masuhara, “Structure of poly (p-hydroxystyrene) film,” in Advances in Resist Technology and Processing VIII, H. Ito, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1466, 458–468 (1991).
  12. J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, London, 1970).
  13. K. Tomioka, M. Iemura, A. Matsui, “Reflectance spectra and optical constatns of pyrene crystals,” J. Phys. Soc. Jpn. 50, 2078–2083 (1981).
    [CrossRef]

1991 (1)

M. Yanagimachi, M. Toriumi, M. Masuhara, “Selective incorporation and aggregation of pyrene in a segmented polyurethaneurea film as revealed by picosecond total internal reflection fluorescence spectroscopy,” Chem. Mater. 3, 413–418 (1991).
[CrossRef]

1990 (1)

A. Itaya, T. Yamada, K. Tokuda, H. Masuhara, “Interfacial characteristics of poly (methyl methacrylate) film: aggregation of pyrene and micropolarity revealed by time-resolved total internal reflection fluorescence spectroscopy,” Polymer J. 22, 697–704 (1990).
[CrossRef]

1982 (1)

C. Allain, D. Ausserre, F. Rondelez, “Direct optical observation of interfacial depletion layers in polymer solutions,” Phys. Rev. Lett. 49, 1694–1697 (1982).
[CrossRef]

1981 (2)

K. Tomioka, M. Iemura, A. Matsui, “Reflectance spectra and optical constatns of pyrene crystals,” J. Phys. Soc. Jpn. 50, 2078–2083 (1981).
[CrossRef]

G. Muller, K. Abraham, M. Schaldach, “Quantitative ATR spectroscopy: some basic considerations,” Appl. Opt. 20, 1182–1190 (1981).
[CrossRef] [PubMed]

1979 (1)

1978 (1)

E. D. Palik, R. T. Holm, “Internal-reflection-spectroscopy studies of thin films and surfaces,” Opt. Eng. 17, 512–524 (1978).

1972 (1)

Abraham, K.

Allain, C.

C. Allain, D. Ausserre, F. Rondelez, “Direct optical observation of interfacial depletion layers in polymer solutions,” Phys. Rev. Lett. 49, 1694–1697 (1982).
[CrossRef]

Ausserre, D.

C. Allain, D. Ausserre, F. Rondelez, “Direct optical observation of interfacial depletion layers in polymer solutions,” Phys. Rev. Lett. 49, 1694–1697 (1982).
[CrossRef]

Benner, R. E.

Birks, J. B.

J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, London, 1970).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Carniglia, C. K.

Chang, R. K.

Drexhage, K. H.

Fenn, J. B.

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific, New York, 1967).

Holm, R. T.

E. D. Palik, R. T. Holm, “Internal-reflection-spectroscopy studies of thin films and surfaces,” Opt. Eng. 17, 512–524 (1978).

Iemura, M.

K. Tomioka, M. Iemura, A. Matsui, “Reflectance spectra and optical constatns of pyrene crystals,” J. Phys. Soc. Jpn. 50, 2078–2083 (1981).
[CrossRef]

Itaya, A.

A. Itaya, T. Yamada, K. Tokuda, H. Masuhara, “Interfacial characteristics of poly (methyl methacrylate) film: aggregation of pyrene and micropolarity revealed by time-resolved total internal reflection fluorescence spectroscopy,” Polymer J. 22, 697–704 (1990).
[CrossRef]

Lee, E.

Mandel, L.

Masuhara, H.

A. Itaya, T. Yamada, K. Tokuda, H. Masuhara, “Interfacial characteristics of poly (methyl methacrylate) film: aggregation of pyrene and micropolarity revealed by time-resolved total internal reflection fluorescence spectroscopy,” Polymer J. 22, 697–704 (1990).
[CrossRef]

M. Toriumi, M. Yanagimachi, H. Masuhara, “Structure of poly (p-hydroxystyrene) film,” in Advances in Resist Technology and Processing VIII, H. Ito, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1466, 458–468 (1991).

M. Toriumi, M. Yanagimachi, H. Masuhara, “Dynamics in the surface layer of the polymer films,” in Dynamics in Small Confining Systems, J.Drake Drake, J.Klafter Klafter, R. Kopelman, eds. (Materials Research Society, Pittsburgh, Pa., 1990), pp. 133–136.

Masuhara, M.

M. Yanagimachi, M. Toriumi, M. Masuhara, “Selective incorporation and aggregation of pyrene in a segmented polyurethaneurea film as revealed by picosecond total internal reflection fluorescence spectroscopy,” Chem. Mater. 3, 413–418 (1991).
[CrossRef]

Matsui, A.

K. Tomioka, M. Iemura, A. Matsui, “Reflectance spectra and optical constatns of pyrene crystals,” J. Phys. Soc. Jpn. 50, 2078–2083 (1981).
[CrossRef]

Muller, G.

Palik, E. D.

E. D. Palik, R. T. Holm, “Internal-reflection-spectroscopy studies of thin films and surfaces,” Opt. Eng. 17, 512–524 (1978).

Rondelez, F.

C. Allain, D. Ausserre, F. Rondelez, “Direct optical observation of interfacial depletion layers in polymer solutions,” Phys. Rev. Lett. 49, 1694–1697 (1982).
[CrossRef]

Schaldach, M.

Tokuda, K.

A. Itaya, T. Yamada, K. Tokuda, H. Masuhara, “Interfacial characteristics of poly (methyl methacrylate) film: aggregation of pyrene and micropolarity revealed by time-resolved total internal reflection fluorescence spectroscopy,” Polymer J. 22, 697–704 (1990).
[CrossRef]

Tomioka, K.

K. Tomioka, M. Iemura, A. Matsui, “Reflectance spectra and optical constatns of pyrene crystals,” J. Phys. Soc. Jpn. 50, 2078–2083 (1981).
[CrossRef]

Toriumi, M.

M. Yanagimachi, M. Toriumi, M. Masuhara, “Selective incorporation and aggregation of pyrene in a segmented polyurethaneurea film as revealed by picosecond total internal reflection fluorescence spectroscopy,” Chem. Mater. 3, 413–418 (1991).
[CrossRef]

M. Toriumi, M. Yanagimachi, H. Masuhara, “Dynamics in the surface layer of the polymer films,” in Dynamics in Small Confining Systems, J.Drake Drake, J.Klafter Klafter, R. Kopelman, eds. (Materials Research Society, Pittsburgh, Pa., 1990), pp. 133–136.

M. Toriumi, M. Yanagimachi, H. Masuhara, “Structure of poly (p-hydroxystyrene) film,” in Advances in Resist Technology and Processing VIII, H. Ito, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1466, 458–468 (1991).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Yamada, T.

A. Itaya, T. Yamada, K. Tokuda, H. Masuhara, “Interfacial characteristics of poly (methyl methacrylate) film: aggregation of pyrene and micropolarity revealed by time-resolved total internal reflection fluorescence spectroscopy,” Polymer J. 22, 697–704 (1990).
[CrossRef]

Yanagimachi, M.

M. Yanagimachi, M. Toriumi, M. Masuhara, “Selective incorporation and aggregation of pyrene in a segmented polyurethaneurea film as revealed by picosecond total internal reflection fluorescence spectroscopy,” Chem. Mater. 3, 413–418 (1991).
[CrossRef]

M. Toriumi, M. Yanagimachi, H. Masuhara, “Dynamics in the surface layer of the polymer films,” in Dynamics in Small Confining Systems, J.Drake Drake, J.Klafter Klafter, R. Kopelman, eds. (Materials Research Society, Pittsburgh, Pa., 1990), pp. 133–136.

M. Toriumi, M. Yanagimachi, H. Masuhara, “Structure of poly (p-hydroxystyrene) film,” in Advances in Resist Technology and Processing VIII, H. Ito, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1466, 458–468 (1991).

Appl. Opt. (2)

Chem. Mater. (1)

M. Yanagimachi, M. Toriumi, M. Masuhara, “Selective incorporation and aggregation of pyrene in a segmented polyurethaneurea film as revealed by picosecond total internal reflection fluorescence spectroscopy,” Chem. Mater. 3, 413–418 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Soc. Jpn. (1)

K. Tomioka, M. Iemura, A. Matsui, “Reflectance spectra and optical constatns of pyrene crystals,” J. Phys. Soc. Jpn. 50, 2078–2083 (1981).
[CrossRef]

Opt. Eng. (1)

E. D. Palik, R. T. Holm, “Internal-reflection-spectroscopy studies of thin films and surfaces,” Opt. Eng. 17, 512–524 (1978).

Phys. Rev. Lett. (1)

C. Allain, D. Ausserre, F. Rondelez, “Direct optical observation of interfacial depletion layers in polymer solutions,” Phys. Rev. Lett. 49, 1694–1697 (1982).
[CrossRef]

Polymer J. (1)

A. Itaya, T. Yamada, K. Tokuda, H. Masuhara, “Interfacial characteristics of poly (methyl methacrylate) film: aggregation of pyrene and micropolarity revealed by time-resolved total internal reflection fluorescence spectroscopy,” Polymer J. 22, 697–704 (1990).
[CrossRef]

Other (5)

M. Toriumi, M. Yanagimachi, H. Masuhara, “Structure of poly (p-hydroxystyrene) film,” in Advances in Resist Technology and Processing VIII, H. Ito, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1466, 458–468 (1991).

J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, London, 1970).

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific, New York, 1967).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

M. Toriumi, M. Yanagimachi, H. Masuhara, “Dynamics in the surface layer of the polymer films,” in Dynamics in Small Confining Systems, J.Drake Drake, J.Klafter Klafter, R. Kopelman, eds. (Materials Research Society, Pittsburgh, Pa., 1990), pp. 133–136.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Coordinate system at the interface between an optically dense medium 1 (refractive index n1) and an optically rare medium 2 (refractive index n2). A plane electromagnetic wave (amplitude E0) strikes the interface by an incident angle θi and is partially refracted (amplitude Et) and partially reflected (amplitude Er): θi, incident angle.

Fig. 2
Fig. 2

Penetration depth of an excitation wave versus an incident angle under the condition of n1 = 1.81, n2 = 1.53, and κ is 0, 0.05, 0.1, 0.2, and 0.5 (from top to bottom).

Fig. 3
Fig. 3

Schematic configuration for the excitation of fluorescence and observation in TIRF experiment.

Fig. 4
Fig. 4

Fluorescence intensity versus the concentration of pyrene or fluorescence probe under incident angle conditions of 40 deg (upper curve) and 63 deg (lower curve); the straight line is tangential to the curves in the lower concentration region.

Fig. 5
Fig. 5

Fluorescence intensity versus the incident angle: (a) κ = 1.51 × 10−3; data are deconvoluted with the instrumentational function of angle (for the solid curve, the FWHM is 1 deg); (b) κ = 7.55 × 10−3; (C) κ = 15.1 × 10−3, and the observation angle is 45 deg. Solid curves are the results of the least-squares fitting of Eq. (11).

Fig. 6
Fig. 6

Refractive index versus pyrene concentration; the point at concentration 0 is the value of the PMMA film itself.

Fig. 7
Fig. 7

Fluorescence intensity versus the observation angle with κ = 15.1 × 10−3 where the incident angle is 45 deg; the solid curve is the result of the least-squares fitting of Eqs. (11) and (12).

Tables (2)

Tables Icon

Table 1 Simulated Fitting Errors

Tables Icon

Table 2 Pyrene Concentration and Refractive Index

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

n 2 = n 2 ( 1 + i κ ) ,
κ = α λ 0 / 4 π n 2 ,
I ex = E 0 2 4 n 1 2 cos θ i 2 ( n 1 cos θ i + Re ) 2 + Im 2 exp ( - 4 π Im z λ 0 ) ,
Re = ( n 2 2 ( 1 - κ 2 ) - n 1 2 sin 2 θ i + { [ n 2 2 ( 1 - κ 2 ) - n 1 2 sin 2 θ i ] 2 + 4 n 2 4 κ 2 } 1 / 2 2 ) 1 / 2 ,
Im = ( - n 2 2 ( 1 - κ 2 ) + n 1 2 sin 2 θ i + { [ n 2 2 ( 1 - κ 2 ) - n 1 2 sin 2 θ i ] 2 + 4 n 2 4 κ 2 } 1 / 2 2 ) 1 / 2 .
d p = λ 0 2 π Im = λ 0 2 π ( 2 - n 2 2 ( 1 - κ 2 ) + n 1 2 sin 2 θ i + { [ n 2 2 ( 1 - κ 2 ) - n 1 2 sin 2 θ i ] 2 + 4 n 2 4 κ 2 } 1 / 2 ) 1 / 2 .
d p = λ 0 / 2 π n 2 κ = 2 / α .
I obs = E 0 2 4 n 1 2 cos 2 θ i ( n 1 cos θ i + Re ) 2 + Im 2 × 4 n 1 2 cos 2 θ o [ n 1 cos θ o + ( n 2 2 - n 1 2 sin 2 θ o ) 1 / 2 ] 2 × 0 th C exp ( - 4 π Im z λ 0 ) d z
I obs = E 0 2 4 n 1 2 cos 2 θ i ( n 1 cos θ i + Re ) 2 + Im 2 4 n 1 2 cos 2 θ o n 1 2 - n 2 2 × 0 th C exp [ - ( 4 π Im λ 0 + 2 d p obs ) z ] d z
d p obs = λ 0 2 π n 1 ( sin 2 θ o - n 2 2 / n 1 2 ) 1 / 2 = λ 0 2 π ( n 1 2 sin 2 θ o - n 2 2 ) 1 / 2 ,
I obs = E 0 2 4 n 1 2 cos 2 θ i ( n 1 cos θ i + Re ) 2 + Im 2 × 4 n 1 2 cos 2 θ o [ n 1 cos θ o + ( n 2 2 - n 1 2   sin 2 θ o ) 1 / 2 ] 2 × λ 0 C 4 π Im [ 1 - exp ( - 4 π Im th λ 0 ) ]
I obs = E 0 2 4 n 1 2 cos 2 θ i ( n 1 cos θ i + Re ) 2 + Im 2 × 4 n 1 2 cos 2 θ o n 1 2 - n 2 2 C ( 4 π Im / λ 0 ) + ( 2 / d p obs ) × { 1 - exp [ ( - 4 π Im λ 0 + 2 d p obs ) th ] }

Metrics