Abstract

In a microscope of a micro-Raman spectrometer a cylindrical lens is introduced to form a line-focus microprobe (LFMP). The dimensions of the LFMP are 0.66 × 167 μm. The lateral spatial resolution of Raman scattering with the LFMP is equal to the spatial resolution of the point-focus microprobe (PFMP). It is shown that the LFMP system enables measurements with a laser power density that is 320 times lower than the PFMP. For the same laser power density in both types of illumination, the LFMP Raman spectra give approximately 320 or ≈ 18 times better signal-to-noise ratio.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Rosasco, E. S. Etz, W. A. Cassatt, “Investigation of Raman spectra of individual micrometer-size particles,” presented at the Fourth International Conference on Raman Spectroscopy, Brunswick, Maine, August 1974.
  2. G. J. Rosasco, E. S. Etz, W. A. Cassatt, “The analysis of discrete fine particles by Raman spectroscopy,” Appl. Spectrosc. 29, 396–404 (1975).
    [CrossRef]
  3. M. Delhaye, P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman Spectrosc. 3, 33–43 (1975).
    [CrossRef]
  4. G. J. Rosasco, “Raman microprobe spectroscopy” in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Heyden, New York, 1980), Vol. 7, pp. 223–282.
  5. P. M. Fauchet, “The Raman microprobe: a quantitative analytical tool to characterize laser-processed semiconductors,” IEEE Circuits Devices Mag. 2, 37–53 (1986).
    [CrossRef]
  6. R. K. Janssen, D. M. Krol, “Micro-Raman spectroscopy: a technique for analyzing bubbles in glass,” Appl. Opt. 24, 275–279 (1985).
    [CrossRef] [PubMed]
  7. H. Morishita, T. Ishida, M. Kobayashi, K. Sato, “Study of micropolytype structures in crystals of steraic acid B form by the Raman microprobe technique,” J. Phys. Chem. 91, 2273–2278 (1987).
    [CrossRef]
  8. B. Wopenka, J. D. Pasreris, “Limitations to quantitative analysis of fluid inclusions in geological samples by laser Raman microprobe spectroscopy,” Appl. Spectrosc. 40, 144–151 (1986).
    [CrossRef]
  9. C. Ballan-Dufrancais, M. Truchet, P. Dhamelincourt, “Interest of Raman laser microprobe (MOLE) for the identification of purinic concretions in histological sections,” Biol. Cellulaire 36, 51–58 (1979).
  10. W. Keifer, “New Raman techniques,” in the Fourth International Conference on Raman Spectroscopy, Brunswick, Maine, August 1974.
  11. W. Keifer, “Recent techniques in Raman spectroscopy” in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Heyden, New York, 1977), Vol. 3, pp. 1–42.
  12. H. H. Eysel, S. Sunder, “Line focus method for recording laser Raman spectra of colored solids,” Appl. Spectrosc. 34, 89–90 (1980).
    [CrossRef]
  13. M. Bowden, D. J. Gardiner, G. Rice, “Line-scanned micro-Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
    [CrossRef]
  14. M. Hercher, W. Mueller, S. Klainer, R. F. Adamowicz, R. E. Meyers, S. E. Schwartz, “An efficient intracavity laser Raman spectrometer,” Appl. Spectrosc. 32, 298–302 (1978).
    [CrossRef]
  15. F. Cerdeira, M. Cardona, “Effect of carrier concentration on the Raman frequencies of Si and Ge,” Phys. Rev. B 5, 1440–1454 (1972).
    [CrossRef]
  16. F. Cerdeira, T. A. Fjeldly, M. Cardona, “Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si. II. Optical modes,” Phys. Rev. B 8, 4734–4745 (1973).
    [CrossRef]
  17. T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
    [CrossRef]
  18. J. J. Freeman, J. Heaviside, P. J. Hendra, J. Prior, E. S. Reid, “Raman spectrometry with high sensitivity,” Appl. Spectrosc. 35, 196–202 (1981).
    [CrossRef]

1990 (1)

M. Bowden, D. J. Gardiner, G. Rice, “Line-scanned micro-Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[CrossRef]

1987 (1)

H. Morishita, T. Ishida, M. Kobayashi, K. Sato, “Study of micropolytype structures in crystals of steraic acid B form by the Raman microprobe technique,” J. Phys. Chem. 91, 2273–2278 (1987).
[CrossRef]

1986 (2)

P. M. Fauchet, “The Raman microprobe: a quantitative analytical tool to characterize laser-processed semiconductors,” IEEE Circuits Devices Mag. 2, 37–53 (1986).
[CrossRef]

B. Wopenka, J. D. Pasreris, “Limitations to quantitative analysis of fluid inclusions in geological samples by laser Raman microprobe spectroscopy,” Appl. Spectrosc. 40, 144–151 (1986).
[CrossRef]

1985 (1)

1981 (1)

1980 (1)

1979 (1)

C. Ballan-Dufrancais, M. Truchet, P. Dhamelincourt, “Interest of Raman laser microprobe (MOLE) for the identification of purinic concretions in histological sections,” Biol. Cellulaire 36, 51–58 (1979).

1978 (1)

1975 (2)

G. J. Rosasco, E. S. Etz, W. A. Cassatt, “The analysis of discrete fine particles by Raman spectroscopy,” Appl. Spectrosc. 29, 396–404 (1975).
[CrossRef]

M. Delhaye, P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman Spectrosc. 3, 33–43 (1975).
[CrossRef]

1973 (1)

F. Cerdeira, T. A. Fjeldly, M. Cardona, “Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si. II. Optical modes,” Phys. Rev. B 8, 4734–4745 (1973).
[CrossRef]

1972 (1)

F. Cerdeira, M. Cardona, “Effect of carrier concentration on the Raman frequencies of Si and Ge,” Phys. Rev. B 5, 1440–1454 (1972).
[CrossRef]

1970 (1)

T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[CrossRef]

Adamowicz, R. F.

Aggarwal, R. L.

T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[CrossRef]

Ballan-Dufrancais, C.

C. Ballan-Dufrancais, M. Truchet, P. Dhamelincourt, “Interest of Raman laser microprobe (MOLE) for the identification of purinic concretions in histological sections,” Biol. Cellulaire 36, 51–58 (1979).

Bowden, M.

M. Bowden, D. J. Gardiner, G. Rice, “Line-scanned micro-Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[CrossRef]

Cardona, M.

F. Cerdeira, T. A. Fjeldly, M. Cardona, “Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si. II. Optical modes,” Phys. Rev. B 8, 4734–4745 (1973).
[CrossRef]

F. Cerdeira, M. Cardona, “Effect of carrier concentration on the Raman frequencies of Si and Ge,” Phys. Rev. B 5, 1440–1454 (1972).
[CrossRef]

Cassatt, W. A.

G. J. Rosasco, E. S. Etz, W. A. Cassatt, “The analysis of discrete fine particles by Raman spectroscopy,” Appl. Spectrosc. 29, 396–404 (1975).
[CrossRef]

G. J. Rosasco, E. S. Etz, W. A. Cassatt, “Investigation of Raman spectra of individual micrometer-size particles,” presented at the Fourth International Conference on Raman Spectroscopy, Brunswick, Maine, August 1974.

Cerdeira, F.

F. Cerdeira, T. A. Fjeldly, M. Cardona, “Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si. II. Optical modes,” Phys. Rev. B 8, 4734–4745 (1973).
[CrossRef]

F. Cerdeira, M. Cardona, “Effect of carrier concentration on the Raman frequencies of Si and Ge,” Phys. Rev. B 5, 1440–1454 (1972).
[CrossRef]

Delhaye, M.

M. Delhaye, P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman Spectrosc. 3, 33–43 (1975).
[CrossRef]

Dhamelincourt, P.

C. Ballan-Dufrancais, M. Truchet, P. Dhamelincourt, “Interest of Raman laser microprobe (MOLE) for the identification of purinic concretions in histological sections,” Biol. Cellulaire 36, 51–58 (1979).

M. Delhaye, P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman Spectrosc. 3, 33–43 (1975).
[CrossRef]

Etz, E. S.

G. J. Rosasco, E. S. Etz, W. A. Cassatt, “The analysis of discrete fine particles by Raman spectroscopy,” Appl. Spectrosc. 29, 396–404 (1975).
[CrossRef]

G. J. Rosasco, E. S. Etz, W. A. Cassatt, “Investigation of Raman spectra of individual micrometer-size particles,” presented at the Fourth International Conference on Raman Spectroscopy, Brunswick, Maine, August 1974.

Eysel, H. H.

Fauchet, P. M.

P. M. Fauchet, “The Raman microprobe: a quantitative analytical tool to characterize laser-processed semiconductors,” IEEE Circuits Devices Mag. 2, 37–53 (1986).
[CrossRef]

Fjeldly, T. A.

F. Cerdeira, T. A. Fjeldly, M. Cardona, “Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si. II. Optical modes,” Phys. Rev. B 8, 4734–4745 (1973).
[CrossRef]

Freeman, J. J.

Gardiner, D. J.

M. Bowden, D. J. Gardiner, G. Rice, “Line-scanned micro-Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[CrossRef]

Hart, T. R.

T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[CrossRef]

Heaviside, J.

Hendra, P. J.

Hercher, M.

Ishida, T.

H. Morishita, T. Ishida, M. Kobayashi, K. Sato, “Study of micropolytype structures in crystals of steraic acid B form by the Raman microprobe technique,” J. Phys. Chem. 91, 2273–2278 (1987).
[CrossRef]

Janssen, R. K.

Keifer, W.

W. Keifer, “New Raman techniques,” in the Fourth International Conference on Raman Spectroscopy, Brunswick, Maine, August 1974.

W. Keifer, “Recent techniques in Raman spectroscopy” in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Heyden, New York, 1977), Vol. 3, pp. 1–42.

Klainer, S.

Kobayashi, M.

H. Morishita, T. Ishida, M. Kobayashi, K. Sato, “Study of micropolytype structures in crystals of steraic acid B form by the Raman microprobe technique,” J. Phys. Chem. 91, 2273–2278 (1987).
[CrossRef]

Krol, D. M.

Lax, B.

T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[CrossRef]

Meyers, R. E.

Morishita, H.

H. Morishita, T. Ishida, M. Kobayashi, K. Sato, “Study of micropolytype structures in crystals of steraic acid B form by the Raman microprobe technique,” J. Phys. Chem. 91, 2273–2278 (1987).
[CrossRef]

Mueller, W.

Pasreris, J. D.

Prior, J.

Reid, E. S.

Rice, G.

M. Bowden, D. J. Gardiner, G. Rice, “Line-scanned micro-Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[CrossRef]

Rosasco, G. J.

G. J. Rosasco, E. S. Etz, W. A. Cassatt, “The analysis of discrete fine particles by Raman spectroscopy,” Appl. Spectrosc. 29, 396–404 (1975).
[CrossRef]

G. J. Rosasco, E. S. Etz, W. A. Cassatt, “Investigation of Raman spectra of individual micrometer-size particles,” presented at the Fourth International Conference on Raman Spectroscopy, Brunswick, Maine, August 1974.

G. J. Rosasco, “Raman microprobe spectroscopy” in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Heyden, New York, 1980), Vol. 7, pp. 223–282.

Sato, K.

H. Morishita, T. Ishida, M. Kobayashi, K. Sato, “Study of micropolytype structures in crystals of steraic acid B form by the Raman microprobe technique,” J. Phys. Chem. 91, 2273–2278 (1987).
[CrossRef]

Schwartz, S. E.

Sunder, S.

Truchet, M.

C. Ballan-Dufrancais, M. Truchet, P. Dhamelincourt, “Interest of Raman laser microprobe (MOLE) for the identification of purinic concretions in histological sections,” Biol. Cellulaire 36, 51–58 (1979).

Wopenka, B.

Appl. Opt. (1)

Appl. Spectrosc. (5)

Biol. Cellulaire (1)

C. Ballan-Dufrancais, M. Truchet, P. Dhamelincourt, “Interest of Raman laser microprobe (MOLE) for the identification of purinic concretions in histological sections,” Biol. Cellulaire 36, 51–58 (1979).

IEEE Circuits Devices Mag (1)

P. M. Fauchet, “The Raman microprobe: a quantitative analytical tool to characterize laser-processed semiconductors,” IEEE Circuits Devices Mag. 2, 37–53 (1986).
[CrossRef]

J. Phys. Chem. (1)

H. Morishita, T. Ishida, M. Kobayashi, K. Sato, “Study of micropolytype structures in crystals of steraic acid B form by the Raman microprobe technique,” J. Phys. Chem. 91, 2273–2278 (1987).
[CrossRef]

J. Raman Spectrosc. (2)

M. Bowden, D. J. Gardiner, G. Rice, “Line-scanned micro-Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[CrossRef]

M. Delhaye, P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman Spectrosc. 3, 33–43 (1975).
[CrossRef]

Phys. Rev. B (3)

F. Cerdeira, M. Cardona, “Effect of carrier concentration on the Raman frequencies of Si and Ge,” Phys. Rev. B 5, 1440–1454 (1972).
[CrossRef]

F. Cerdeira, T. A. Fjeldly, M. Cardona, “Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si. II. Optical modes,” Phys. Rev. B 8, 4734–4745 (1973).
[CrossRef]

T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[CrossRef]

Other (4)

W. Keifer, “New Raman techniques,” in the Fourth International Conference on Raman Spectroscopy, Brunswick, Maine, August 1974.

W. Keifer, “Recent techniques in Raman spectroscopy” in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Heyden, New York, 1977), Vol. 3, pp. 1–42.

G. J. Rosasco, “Raman microprobe spectroscopy” in Advances in Infrared and Raman Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Heyden, New York, 1980), Vol. 7, pp. 223–282.

G. J. Rosasco, E. S. Etz, W. A. Cassatt, “Investigation of Raman spectra of individual micrometer-size particles,” presented at the Fourth International Conference on Raman Spectroscopy, Brunswick, Maine, August 1974.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Paths of laser light rays in an optical system that consists of a CL and a SL. The symbols used are defined in Table 1.

Fig. 2
Fig. 2

Raman microscope with CL inserted for laser line focusing. Laser epi-illumination of the sample is used.

Fig. 3
Fig. 3

(a) Wave number, (b) FWHM, and (c) integral intensity of a silicon TO(Γ) phonon band in Raman spectra taken with the PFMP and the LFMP excitation as a function of the laser power at the sample.

Fig. 4
Fig. 4

Raman spectra of a silicon TO(Γ) phonon band taken with the PFMP and the LFMP excitation. Laser powers at the sample are (a) 15 mW, (b) 220 mW; slit width, 300 μm; scanning step, 0.5 cm−1; accumulation time, 1 s.

Fig. 5
Fig. 5

Raman spectra of a silicon TO(Γ) phonon band taken with ≈200 kW/cm2 of laser power density at the sample: (a) PFMP excitation, (b) LFMP excitation. Slit width, 300 μm; scanning step, 0.5 cm−1; accumulation time, 1 s.

Fig. 6
Fig. 6

Raman spectrum of amorphous silicon taken with the LFMP excitation. Laser power at the sample, 220 mW; Slit width, 800 μm; scanning step, 3 cm−1; accumulation time, 3 s.

Tables (1)

Tables Icon

Table 1 Definitions of Symbols and Values Used

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

L = f ob f c d .
d eff = f c l co - f c d ap .
r = 0.61 λ NA .
M P = M ob + f 2 r d ap f c L .
M , = M P , P * M S
M = ( Ω ob / Ω s ) 1 / 2 ,
M S = ( Ω ob / Ω s ) 1 / 2 / M P .
Ω ob = 2 π { 1 - [ 1 - ( NA / n ) 2 ] 1 / 2 } ,
Ω s = 2 π { 1 - [ 1 + ( 2 f S ) - 2 ] - 1 / 2 } .

Metrics