Abstract

An investigation of subnanosecond switching of 119-μm radiation achieved by irradiating high-resistivity silicon wafers with 1.7-ns, 337-nm pulses from a nitrogen laser is presented. The experimental results are compared with a one-dimensional numerical multilayer model, which accounts for the generation, recombination, and diffusion of the free carriers and the resulting change of the far-infrared optical properties of the Si wafer.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Alcock, P. B. Corkum, D. J. James, “A fast scalable switching technique for high-power CO2 laser radiation,” Appl. Phys. Lett. 27, 680–682 (1975).
    [Crossref]
  2. P. B. Corkum, A. J. Alcock, D. F. Rollin, H. D. Morrison, “High-power subnamosecond pulses from an injection mode-locked multiatmosphere CO2 oscillator,” Appl. Phys. Lett. 32, 27–29 (1978).
    [Crossref]
  3. S. A. Jamison, A. V. Nurmikko, “Generation of picosecond pulses of variable duration at 10.6 μm,” Appl. Phys. Lett. 33, 598–660 (1978).
    [Crossref]
  4. M. Gimple, “High speed submillimeter switching,” M.S. (University of Illinois at Urbana–Champaign, Illinois, 1976).
  5. H. Salzmann, T. Vogel, G. Dodel, “Subnanosecond optical switching of far infrared radiation,” Opt. Comm. 47, 340–342 (1983).
    [Crossref]
  6. H. P. Röser, E. J. Durwen, R. Wattenbach, G. V. Schultz, “Investigation of a heterodyne receiver with open structure mixer at 324 GHz and 693 GHz,” J. Infrared Millimeter Waves 5, 301–314 (1984).
    [Crossref]
  7. E. V. Loewenstein, D. R. Smith, R. L. Morgan, “Optical constants of far-infrared materials. 2: crystalline solids,” Appl. Opt. 12, 398–406 (1973).
    [Crossref] [PubMed]
  8. K.-H. Hellwege, ed. Semiconductors: Physics of Group IV Elements and III–V Compounds Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, (Springer-Verlag, Berlin, 1982), p. 387.
  9. L. Huldt, N. G. Nilsson, K. G. Svantesson, “The temperature dependence of band-to-band Auger recombination in silicon,” Appl. Phys. Lett. 35, 776–777 (1979).
    [Crossref]
  10. V. L. Bonc-Brouevic, S. G. Kalasnikov, Halbleiterphysik (Deutscher Verlag der Wissenschaften, Berlin, 1982), paragraph 9.3, 15.
    [Crossref]
  11. Ref. 10, p. 285.
  12. J. A. Pals, in Crystalline Semiconducting Materials and Devices, P. N. Butcher, N. H. March, M. P. Tosi (Plenum, New York, 1986), p. 534.
  13. M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, London, 1965), pp. 51 ff.

1984 (1)

H. P. Röser, E. J. Durwen, R. Wattenbach, G. V. Schultz, “Investigation of a heterodyne receiver with open structure mixer at 324 GHz and 693 GHz,” J. Infrared Millimeter Waves 5, 301–314 (1984).
[Crossref]

1983 (1)

H. Salzmann, T. Vogel, G. Dodel, “Subnanosecond optical switching of far infrared radiation,” Opt. Comm. 47, 340–342 (1983).
[Crossref]

1979 (1)

L. Huldt, N. G. Nilsson, K. G. Svantesson, “The temperature dependence of band-to-band Auger recombination in silicon,” Appl. Phys. Lett. 35, 776–777 (1979).
[Crossref]

1978 (2)

P. B. Corkum, A. J. Alcock, D. F. Rollin, H. D. Morrison, “High-power subnamosecond pulses from an injection mode-locked multiatmosphere CO2 oscillator,” Appl. Phys. Lett. 32, 27–29 (1978).
[Crossref]

S. A. Jamison, A. V. Nurmikko, “Generation of picosecond pulses of variable duration at 10.6 μm,” Appl. Phys. Lett. 33, 598–660 (1978).
[Crossref]

1975 (1)

A. J. Alcock, P. B. Corkum, D. J. James, “A fast scalable switching technique for high-power CO2 laser radiation,” Appl. Phys. Lett. 27, 680–682 (1975).
[Crossref]

1973 (1)

Alcock, A. J.

P. B. Corkum, A. J. Alcock, D. F. Rollin, H. D. Morrison, “High-power subnamosecond pulses from an injection mode-locked multiatmosphere CO2 oscillator,” Appl. Phys. Lett. 32, 27–29 (1978).
[Crossref]

A. J. Alcock, P. B. Corkum, D. J. James, “A fast scalable switching technique for high-power CO2 laser radiation,” Appl. Phys. Lett. 27, 680–682 (1975).
[Crossref]

Bonc-Brouevic, V. L.

V. L. Bonc-Brouevic, S. G. Kalasnikov, Halbleiterphysik (Deutscher Verlag der Wissenschaften, Berlin, 1982), paragraph 9.3, 15.
[Crossref]

Born, M.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, London, 1965), pp. 51 ff.

Corkum, P. B.

P. B. Corkum, A. J. Alcock, D. F. Rollin, H. D. Morrison, “High-power subnamosecond pulses from an injection mode-locked multiatmosphere CO2 oscillator,” Appl. Phys. Lett. 32, 27–29 (1978).
[Crossref]

A. J. Alcock, P. B. Corkum, D. J. James, “A fast scalable switching technique for high-power CO2 laser radiation,” Appl. Phys. Lett. 27, 680–682 (1975).
[Crossref]

Dodel, G.

H. Salzmann, T. Vogel, G. Dodel, “Subnanosecond optical switching of far infrared radiation,” Opt. Comm. 47, 340–342 (1983).
[Crossref]

Durwen, E. J.

H. P. Röser, E. J. Durwen, R. Wattenbach, G. V. Schultz, “Investigation of a heterodyne receiver with open structure mixer at 324 GHz and 693 GHz,” J. Infrared Millimeter Waves 5, 301–314 (1984).
[Crossref]

Gimple, M.

M. Gimple, “High speed submillimeter switching,” M.S. (University of Illinois at Urbana–Champaign, Illinois, 1976).

Huldt, L.

L. Huldt, N. G. Nilsson, K. G. Svantesson, “The temperature dependence of band-to-band Auger recombination in silicon,” Appl. Phys. Lett. 35, 776–777 (1979).
[Crossref]

James, D. J.

A. J. Alcock, P. B. Corkum, D. J. James, “A fast scalable switching technique for high-power CO2 laser radiation,” Appl. Phys. Lett. 27, 680–682 (1975).
[Crossref]

Jamison, S. A.

S. A. Jamison, A. V. Nurmikko, “Generation of picosecond pulses of variable duration at 10.6 μm,” Appl. Phys. Lett. 33, 598–660 (1978).
[Crossref]

Kalasnikov, S. G.

V. L. Bonc-Brouevic, S. G. Kalasnikov, Halbleiterphysik (Deutscher Verlag der Wissenschaften, Berlin, 1982), paragraph 9.3, 15.
[Crossref]

Loewenstein, E. V.

Morgan, R. L.

Morrison, H. D.

P. B. Corkum, A. J. Alcock, D. F. Rollin, H. D. Morrison, “High-power subnamosecond pulses from an injection mode-locked multiatmosphere CO2 oscillator,” Appl. Phys. Lett. 32, 27–29 (1978).
[Crossref]

Nilsson, N. G.

L. Huldt, N. G. Nilsson, K. G. Svantesson, “The temperature dependence of band-to-band Auger recombination in silicon,” Appl. Phys. Lett. 35, 776–777 (1979).
[Crossref]

Nurmikko, A. V.

S. A. Jamison, A. V. Nurmikko, “Generation of picosecond pulses of variable duration at 10.6 μm,” Appl. Phys. Lett. 33, 598–660 (1978).
[Crossref]

Pals, J. A.

J. A. Pals, in Crystalline Semiconducting Materials and Devices, P. N. Butcher, N. H. March, M. P. Tosi (Plenum, New York, 1986), p. 534.

Rollin, D. F.

P. B. Corkum, A. J. Alcock, D. F. Rollin, H. D. Morrison, “High-power subnamosecond pulses from an injection mode-locked multiatmosphere CO2 oscillator,” Appl. Phys. Lett. 32, 27–29 (1978).
[Crossref]

Röser, H. P.

H. P. Röser, E. J. Durwen, R. Wattenbach, G. V. Schultz, “Investigation of a heterodyne receiver with open structure mixer at 324 GHz and 693 GHz,” J. Infrared Millimeter Waves 5, 301–314 (1984).
[Crossref]

Salzmann, H.

H. Salzmann, T. Vogel, G. Dodel, “Subnanosecond optical switching of far infrared radiation,” Opt. Comm. 47, 340–342 (1983).
[Crossref]

Schultz, G. V.

H. P. Röser, E. J. Durwen, R. Wattenbach, G. V. Schultz, “Investigation of a heterodyne receiver with open structure mixer at 324 GHz and 693 GHz,” J. Infrared Millimeter Waves 5, 301–314 (1984).
[Crossref]

Smith, D. R.

Svantesson, K. G.

L. Huldt, N. G. Nilsson, K. G. Svantesson, “The temperature dependence of band-to-band Auger recombination in silicon,” Appl. Phys. Lett. 35, 776–777 (1979).
[Crossref]

Vogel, T.

H. Salzmann, T. Vogel, G. Dodel, “Subnanosecond optical switching of far infrared radiation,” Opt. Comm. 47, 340–342 (1983).
[Crossref]

Wattenbach, R.

H. P. Röser, E. J. Durwen, R. Wattenbach, G. V. Schultz, “Investigation of a heterodyne receiver with open structure mixer at 324 GHz and 693 GHz,” J. Infrared Millimeter Waves 5, 301–314 (1984).
[Crossref]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, London, 1965), pp. 51 ff.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. J. Alcock, P. B. Corkum, D. J. James, “A fast scalable switching technique for high-power CO2 laser radiation,” Appl. Phys. Lett. 27, 680–682 (1975).
[Crossref]

P. B. Corkum, A. J. Alcock, D. F. Rollin, H. D. Morrison, “High-power subnamosecond pulses from an injection mode-locked multiatmosphere CO2 oscillator,” Appl. Phys. Lett. 32, 27–29 (1978).
[Crossref]

S. A. Jamison, A. V. Nurmikko, “Generation of picosecond pulses of variable duration at 10.6 μm,” Appl. Phys. Lett. 33, 598–660 (1978).
[Crossref]

L. Huldt, N. G. Nilsson, K. G. Svantesson, “The temperature dependence of band-to-band Auger recombination in silicon,” Appl. Phys. Lett. 35, 776–777 (1979).
[Crossref]

J. Infrared Millimeter Waves (1)

H. P. Röser, E. J. Durwen, R. Wattenbach, G. V. Schultz, “Investigation of a heterodyne receiver with open structure mixer at 324 GHz and 693 GHz,” J. Infrared Millimeter Waves 5, 301–314 (1984).
[Crossref]

Opt. Comm. (1)

H. Salzmann, T. Vogel, G. Dodel, “Subnanosecond optical switching of far infrared radiation,” Opt. Comm. 47, 340–342 (1983).
[Crossref]

Other (6)

K.-H. Hellwege, ed. Semiconductors: Physics of Group IV Elements and III–V Compounds Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, (Springer-Verlag, Berlin, 1982), p. 387.

M. Gimple, “High speed submillimeter switching,” M.S. (University of Illinois at Urbana–Champaign, Illinois, 1976).

V. L. Bonc-Brouevic, S. G. Kalasnikov, Halbleiterphysik (Deutscher Verlag der Wissenschaften, Berlin, 1982), paragraph 9.3, 15.
[Crossref]

Ref. 10, p. 285.

J. A. Pals, in Crystalline Semiconducting Materials and Devices, P. N. Butcher, N. H. March, M. P. Tosi (Plenum, New York, 1986), p. 534.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, London, 1965), pp. 51 ff.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Optical setup.

Fig. 2
Fig. 2

FIR signals measured in transmission after UV excitation. Time scales: 20 ns/division (left-hand graph), 100 ns/division (middle graph), 10 μs/division (right-hand graph). UV pulse energy 30 μJ, UV pulse duration 1.7-ns (FWHM). The onset of the UV pulse is indicated by the arrows. The zero-transmission baseline is indicated by 0. Si sample thickness: 437 ± 2 μm.

Fig. 3
Fig. 3

FIR signals measured in reflection after UV excitation. Time scales: 100 ns/division (left-hand graph), 500 ns/division (middle graph), 10 μs/division (right-hand graph). UV data are the same as those in Fig. 2. Si sample thickness: 437 ± 2 μm. 0 indicates the signal level before excitation.

Fig. 4
Fig. 4

FIR signals measured in reflection after UV excitation. Same data as those in Fig. 3; however, Si sample thickness was 441 ± 2 μm. 0 indicates the signal level before excitation.

Fig. 5
Fig. 5

Sampling oscilloscope trace of the FIR signals measured in transmission. Time scale: 680 ps/div. The signal was inverted, and there were two overlays. UV pulse energy was 30 μJ, and UV pulse duration was 1.7 ns.

Fig. 6
Fig. 6

Sampling oscilloscope trace of the FIR signal measured in reflection. Time scale: 680 ps/div. There were two overlays. UV pulse energy was 30 μJ, and UV pulse duration was 1.7 ns.

Fig. 7
Fig. 7

Fall time of the FIR signal measured in transmission as a function of the UV-pulse energy density. The two horizontal dashed lines mark the rise times of the UV pulse and the time integral of the UV pulse, respectively.

Fig. 8
Fig. 8

Modulation degrees m r and m t of the FIR reflection and the FIR transmission, respectively, as functions of the UV-pulse energy density.

Fig. 9
Fig. 9

Time-dependent evolution of the carrier density profile in Si after UV excitation: (a) 10 equidistant time steps from 1 to 10 ns. (b) 8 equidistant time steps from 6 to 20 μs.

Fig. 10
Fig. 10

Time-dependent evolution of the FIR refractive- index profiles in Si after UV excitation within 10 equidistant time steps from 0.1 to 1 ns. (a) Real part of the refractive index. (b) Imaginary part of the refractive index.

Fig. 11
Fig. 11

(a) Numerical calculation, (b) measured time dependence of the FIR reflectivity ℜ and the transmissivity ℑ (UV energy is 30 μJ and the sample thickness is 436 μm).

Fig. 12
Fig. 12

(a) Numerical calculation, (b) measured time dependence of the FIR reflectivity ℜ and the transmissivity ℑ (UV energy is 30 μJ and the sample thickness is 441 μm).

Fig. 13
Fig. 13

(a) Numerical calculation, (b) measured time dependence of the FIR reflectivity ℜ and the transmissivity ℑ (UV energy is 2.4 μJ and the sample thickness is 441 μm).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

n c ( z , t ) t D 2 n c ( z , t ) z 2 = G ( z , t ) R ( z , t ) ,
G ( z , t ) = E δ h ν d A sin 2 [ π 2 δ ( t n uv z c ) ] exp ( z d ) ,
R ( z , t ) = γ 3 n c 3 γ 2 n c 2 γ 1 n c ,
= L ω p e 2 τ e 2 ( 1 + ω FIR 2 τ e 2 ) ( 1 j 1 ω FIR τ e ) ω p p 2 τ p 2 ( 1 + ω FIR 2 τ p 2 ) ( 1 j 1 ω FIR τ p ) ,
ω p e , p p 2 = n e , p e 2 m e , p 0 ,
U 1 ( 0 ) = V 2 ( 0 ) = 1 , V 1 ( 0 ) = U 2 ( 0 ) = 0 ,
| U 1 ( x ) V 1 ( x ) U 2 ( x ) V 2 ( x ) | = 1 ,
[ U ( x ) V ( x ) ] = [ U 1 ( x ) U 2 ( x ) V 1 ( x ) V 2 ( x ) ] · [ U 0 V 0 ] .
[ U 0 V 0 ] = [ V 2 ( x ) U 2 ( x ) V 1 ( x ) U 1 ( x ) ] M ( x ) [ U ( x ) V ( x ) ] .
r = ( m 11 + m 12 p 1 ) p 0 ( m 21 + m 22 p 1 ) ( m 11 + m 12 p 1 ) p 0 + ( m 21 + m 22 p 1 ) ,
t = 2 p 0 ( m 11 + m 12 p 1 ) p 0 + ( m 21 + m 22 p 1 ) .
p i = { i μ i cos θ i if the electric vector is perpendicular to the plane of incidence μ i i cos θ i if the electric vector is parallel to the plane of incidence ,
= | r | 2 ; = p 1 p 0 · | t | 2 .
m 11 = cos ( k 0 n ¯ x cos θ ) , m 12 = j p sin ( k 0 n ¯ x cos θ ) , m 21 = j p sin ( k 0 n ¯ x cos θ ) , m 22 = cos ( k 0 n ¯ x cos θ ) ,
n i + 1 sin θ i + 1 = n i sin θ i .
x ( i ) = c { exp [ i / ( n 1 ) ln ( t / c + 1 ) ] 1 } ,

Metrics