Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hybrid optoelectronic adaptive resonance theory neural processor, ART1

Not Accessible

Your library or personal account may give you access

Abstract

For industrial use, adaptive resonance theory (ART) neural networks have the potential of becoming an important component in a variety of commercial and military systems. Efficient software emulations of these networks are adequate in many of today’s low-end applications such as information retrieval or group technology. But for larger applications, special-purpose hardware is required to achieve the expected performance requirements. Direct electronic implementation of this network model has proven difficult to scale to large-input dimensionality owing to the high degree of interconnectivity between layers. Here, a new hardware implementation design of ART1 is proposed that handles input dimensions of practical size. It efficiently combines the advantages of optical and electronic devices to produce a stand-alone ART1 processor. Parallel computations are relegated to free-space optics, while serial operations are performed in VLSI electronics. One possible physical realization of this architecture is proposed. No hardware has as yet been built.

© 1992 Optical Society of America

Full Article  |  PDF Article
More Like This
Image identification system based on an optical broadcast neural network processor

Marta Ruiz-Llata and Horacio Lamela-Rivera
Appl. Opt. 44(12) 2366-2376 (2005)

Photorefractive adaptive resonance neural network

Donald C. Wunsch, David J. Morris, Rick L. McGann, and Thomas P. Caudell
Appl. Opt. 32(8) 1399-1407 (1993)

Grain-size considerations for optoelectronic multistage interconnection networks

Ashok V. Krishnamoorthy, Philippe J. Marchand, Fouad E. Kiamilev, and Sadik C. Esener
Appl. Opt. 31(26) 5480-5507 (1992)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.