Abstract

We describe a dual-technique laser calorimeter for measuring the absorption of dielectric thin films in the UV region below 400 nm. The instrument measures the temperature rise and absorption of a sample simultaneously by two independent techniques, namely, a resistance thermometer and a temperature transducer. The absorption constant β and extinction coefficient κ of Sb2O3 and ZrO2 films at 308 and 337 nm are measured by using the calorimeter. The principle, construction, and application of the calorimeter are described.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ahrens, H. Welling, H. E. Scheel, “Measurement of optical absorption in dielectric reflectors,” Appl. Phys. 1, 69–71 (1973).
    [CrossRef]
  2. R. A. Hoffman, “Apparatus for the measurement of optical absorptivity in laser mirrors,” Appl. Opt. 13, 1405–1411 (1974).
    [CrossRef] [PubMed]
  3. M. Hass, J. W. Davisson, H. B. Rosenstoc, J. Babiskin, “Measurement of very low absorption coefficients by laser calorimetry,” Appl. Opt. 14, 1128–1130 (1975).
    [CrossRef] [PubMed]
  4. A. Hordvik, “Measurement techniques for small absorption coefficients: recent advances,” Appl. Opt. 16, 2827–2833 (1977).
    [CrossRef] [PubMed]
  5. P. A. Temple, “Experimental and theoretical considerations in thin film laser calorimetry,” in Optical Thin Films, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.325, 156 (1982).
  6. P. A. Temple, “Experimental and theoretical considerations in thin film laser calorimetry,” Opt. Eng. 23, 326–330 (1984).
  7. R. Atkinson, “Development of a wavelength scanning laser calorimeter,” Appl. Opt. 24, 464–471 (1985).
    [CrossRef] [PubMed]
  8. S. Uchida, M. Tanaka, Y. Sakawa, H. Nishimura, T. Yamanaka, C. Yamanaka, “Plasma calorimeter for absorption measurement of laser produced plasma,” Rev. Sci. Instrum. 56, 1867–1869 (1985).
    [CrossRef]
  9. D. J. Gallant, “Computer automated laser absorption calorimeter,” Rev. Sci. Instrum. 59, 2241–2246 (1988).
    [CrossRef]
  10. M. Hass, J. W. Davison, P. H. Klein, L. L. Boyer, “Infrared absorption in low loss single crystals near 10.6 μm,” J. Appl. Phys. 45, 3959–3964 (1974).
    [CrossRef]
  11. G. Enrique Bernal, “Heat flow analysis of laser absorption calorimetry,” Appl. Opt. 14, 314–321 (1975).
    [CrossRef]
  12. H. K. Pulker, “Optical losses in dielectric films,” Thick Solid Films 34, 343–347 (1976).
    [CrossRef]
  13. E. Welsch, H. G. Walther, H. J. Kühn, “Localization of absorption losses in oxide single layer films,” J. Phys. (Paris) 48, 419–424 (1987).
    [CrossRef]
  14. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. 16, 1214–1222 (1983).
  15. K. V. S. R. Apparao, N. K. Sahoo, T. C. Bagchi, “Low loss films for optical applications in the UV region,” Thin Solid Films 129, L71–L73 (1985).
    [CrossRef]
  16. R. A. Smith, F. E. Jones, R. P. Chasmar, The Detection and Measurement of Infra-red Radiation (Clarendon, Oxford, 1968), Chap. 3, pp. 84–93.

1988 (1)

D. J. Gallant, “Computer automated laser absorption calorimeter,” Rev. Sci. Instrum. 59, 2241–2246 (1988).
[CrossRef]

1987 (1)

E. Welsch, H. G. Walther, H. J. Kühn, “Localization of absorption losses in oxide single layer films,” J. Phys. (Paris) 48, 419–424 (1987).
[CrossRef]

1985 (3)

K. V. S. R. Apparao, N. K. Sahoo, T. C. Bagchi, “Low loss films for optical applications in the UV region,” Thin Solid Films 129, L71–L73 (1985).
[CrossRef]

R. Atkinson, “Development of a wavelength scanning laser calorimeter,” Appl. Opt. 24, 464–471 (1985).
[CrossRef] [PubMed]

S. Uchida, M. Tanaka, Y. Sakawa, H. Nishimura, T. Yamanaka, C. Yamanaka, “Plasma calorimeter for absorption measurement of laser produced plasma,” Rev. Sci. Instrum. 56, 1867–1869 (1985).
[CrossRef]

1984 (1)

P. A. Temple, “Experimental and theoretical considerations in thin film laser calorimetry,” Opt. Eng. 23, 326–330 (1984).

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. 16, 1214–1222 (1983).

1977 (1)

1976 (1)

H. K. Pulker, “Optical losses in dielectric films,” Thick Solid Films 34, 343–347 (1976).
[CrossRef]

1975 (2)

1974 (2)

R. A. Hoffman, “Apparatus for the measurement of optical absorptivity in laser mirrors,” Appl. Opt. 13, 1405–1411 (1974).
[CrossRef] [PubMed]

M. Hass, J. W. Davison, P. H. Klein, L. L. Boyer, “Infrared absorption in low loss single crystals near 10.6 μm,” J. Appl. Phys. 45, 3959–3964 (1974).
[CrossRef]

1973 (1)

H. Ahrens, H. Welling, H. E. Scheel, “Measurement of optical absorption in dielectric reflectors,” Appl. Phys. 1, 69–71 (1973).
[CrossRef]

Ahrens, H.

H. Ahrens, H. Welling, H. E. Scheel, “Measurement of optical absorption in dielectric reflectors,” Appl. Phys. 1, 69–71 (1973).
[CrossRef]

Apparao, K. V. S. R.

K. V. S. R. Apparao, N. K. Sahoo, T. C. Bagchi, “Low loss films for optical applications in the UV region,” Thin Solid Films 129, L71–L73 (1985).
[CrossRef]

Atkinson, R.

Babiskin, J.

Bagchi, T. C.

K. V. S. R. Apparao, N. K. Sahoo, T. C. Bagchi, “Low loss films for optical applications in the UV region,” Thin Solid Films 129, L71–L73 (1985).
[CrossRef]

Boyer, L. L.

M. Hass, J. W. Davison, P. H. Klein, L. L. Boyer, “Infrared absorption in low loss single crystals near 10.6 μm,” J. Appl. Phys. 45, 3959–3964 (1974).
[CrossRef]

Chasmar, R. P.

R. A. Smith, F. E. Jones, R. P. Chasmar, The Detection and Measurement of Infra-red Radiation (Clarendon, Oxford, 1968), Chap. 3, pp. 84–93.

Davison, J. W.

M. Hass, J. W. Davison, P. H. Klein, L. L. Boyer, “Infrared absorption in low loss single crystals near 10.6 μm,” J. Appl. Phys. 45, 3959–3964 (1974).
[CrossRef]

Davisson, J. W.

Enrique Bernal, G.

Gallant, D. J.

D. J. Gallant, “Computer automated laser absorption calorimeter,” Rev. Sci. Instrum. 59, 2241–2246 (1988).
[CrossRef]

Hass, M.

M. Hass, J. W. Davisson, H. B. Rosenstoc, J. Babiskin, “Measurement of very low absorption coefficients by laser calorimetry,” Appl. Opt. 14, 1128–1130 (1975).
[CrossRef] [PubMed]

M. Hass, J. W. Davison, P. H. Klein, L. L. Boyer, “Infrared absorption in low loss single crystals near 10.6 μm,” J. Appl. Phys. 45, 3959–3964 (1974).
[CrossRef]

Hoffman, R. A.

Hordvik, A.

Jones, F. E.

R. A. Smith, F. E. Jones, R. P. Chasmar, The Detection and Measurement of Infra-red Radiation (Clarendon, Oxford, 1968), Chap. 3, pp. 84–93.

Klein, P. H.

M. Hass, J. W. Davison, P. H. Klein, L. L. Boyer, “Infrared absorption in low loss single crystals near 10.6 μm,” J. Appl. Phys. 45, 3959–3964 (1974).
[CrossRef]

Kühn, H. J.

E. Welsch, H. G. Walther, H. J. Kühn, “Localization of absorption losses in oxide single layer films,” J. Phys. (Paris) 48, 419–424 (1987).
[CrossRef]

Nishimura, H.

S. Uchida, M. Tanaka, Y. Sakawa, H. Nishimura, T. Yamanaka, C. Yamanaka, “Plasma calorimeter for absorption measurement of laser produced plasma,” Rev. Sci. Instrum. 56, 1867–1869 (1985).
[CrossRef]

Pulker, H. K.

H. K. Pulker, “Optical losses in dielectric films,” Thick Solid Films 34, 343–347 (1976).
[CrossRef]

Rosenstoc, H. B.

Sahoo, N. K.

K. V. S. R. Apparao, N. K. Sahoo, T. C. Bagchi, “Low loss films for optical applications in the UV region,” Thin Solid Films 129, L71–L73 (1985).
[CrossRef]

Sakawa, Y.

S. Uchida, M. Tanaka, Y. Sakawa, H. Nishimura, T. Yamanaka, C. Yamanaka, “Plasma calorimeter for absorption measurement of laser produced plasma,” Rev. Sci. Instrum. 56, 1867–1869 (1985).
[CrossRef]

Scheel, H. E.

H. Ahrens, H. Welling, H. E. Scheel, “Measurement of optical absorption in dielectric reflectors,” Appl. Phys. 1, 69–71 (1973).
[CrossRef]

Smith, R. A.

R. A. Smith, F. E. Jones, R. P. Chasmar, The Detection and Measurement of Infra-red Radiation (Clarendon, Oxford, 1968), Chap. 3, pp. 84–93.

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. 16, 1214–1222 (1983).

Tanaka, M.

S. Uchida, M. Tanaka, Y. Sakawa, H. Nishimura, T. Yamanaka, C. Yamanaka, “Plasma calorimeter for absorption measurement of laser produced plasma,” Rev. Sci. Instrum. 56, 1867–1869 (1985).
[CrossRef]

Temple, P. A.

P. A. Temple, “Experimental and theoretical considerations in thin film laser calorimetry,” Opt. Eng. 23, 326–330 (1984).

P. A. Temple, “Experimental and theoretical considerations in thin film laser calorimetry,” in Optical Thin Films, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.325, 156 (1982).

Uchida, S.

S. Uchida, M. Tanaka, Y. Sakawa, H. Nishimura, T. Yamanaka, C. Yamanaka, “Plasma calorimeter for absorption measurement of laser produced plasma,” Rev. Sci. Instrum. 56, 1867–1869 (1985).
[CrossRef]

Walther, H. G.

E. Welsch, H. G. Walther, H. J. Kühn, “Localization of absorption losses in oxide single layer films,” J. Phys. (Paris) 48, 419–424 (1987).
[CrossRef]

Welling, H.

H. Ahrens, H. Welling, H. E. Scheel, “Measurement of optical absorption in dielectric reflectors,” Appl. Phys. 1, 69–71 (1973).
[CrossRef]

Welsch, E.

E. Welsch, H. G. Walther, H. J. Kühn, “Localization of absorption losses in oxide single layer films,” J. Phys. (Paris) 48, 419–424 (1987).
[CrossRef]

Yamanaka, C.

S. Uchida, M. Tanaka, Y. Sakawa, H. Nishimura, T. Yamanaka, C. Yamanaka, “Plasma calorimeter for absorption measurement of laser produced plasma,” Rev. Sci. Instrum. 56, 1867–1869 (1985).
[CrossRef]

Yamanaka, T.

S. Uchida, M. Tanaka, Y. Sakawa, H. Nishimura, T. Yamanaka, C. Yamanaka, “Plasma calorimeter for absorption measurement of laser produced plasma,” Rev. Sci. Instrum. 56, 1867–1869 (1985).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. (1)

H. Ahrens, H. Welling, H. E. Scheel, “Measurement of optical absorption in dielectric reflectors,” Appl. Phys. 1, 69–71 (1973).
[CrossRef]

J. Appl. Phys. (1)

M. Hass, J. W. Davison, P. H. Klein, L. L. Boyer, “Infrared absorption in low loss single crystals near 10.6 μm,” J. Appl. Phys. 45, 3959–3964 (1974).
[CrossRef]

J. Phys. (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. 16, 1214–1222 (1983).

J. Phys. (Paris) (1)

E. Welsch, H. G. Walther, H. J. Kühn, “Localization of absorption losses in oxide single layer films,” J. Phys. (Paris) 48, 419–424 (1987).
[CrossRef]

Opt. Eng. (1)

P. A. Temple, “Experimental and theoretical considerations in thin film laser calorimetry,” Opt. Eng. 23, 326–330 (1984).

Rev. Sci. Instrum. (2)

S. Uchida, M. Tanaka, Y. Sakawa, H. Nishimura, T. Yamanaka, C. Yamanaka, “Plasma calorimeter for absorption measurement of laser produced plasma,” Rev. Sci. Instrum. 56, 1867–1869 (1985).
[CrossRef]

D. J. Gallant, “Computer automated laser absorption calorimeter,” Rev. Sci. Instrum. 59, 2241–2246 (1988).
[CrossRef]

Thick Solid Films (1)

H. K. Pulker, “Optical losses in dielectric films,” Thick Solid Films 34, 343–347 (1976).
[CrossRef]

Thin Solid Films (1)

K. V. S. R. Apparao, N. K. Sahoo, T. C. Bagchi, “Low loss films for optical applications in the UV region,” Thin Solid Films 129, L71–L73 (1985).
[CrossRef]

Other (2)

R. A. Smith, F. E. Jones, R. P. Chasmar, The Detection and Measurement of Infra-red Radiation (Clarendon, Oxford, 1968), Chap. 3, pp. 84–93.

P. A. Temple, “Experimental and theoretical considerations in thin film laser calorimetry,” in Optical Thin Films, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.325, 156 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dual-technique thermometer construction.

Fig. 2
Fig. 2

Circuit used to record the temperature rise and the decay of the sample film by using (a) temperature transducer and (b) resistance thermometer. (c) Circuit for measuring ΔRP of a sample thermometer.

Fig. 3
Fig. 3

Experimental setup of the calorimeter for thin-film absorption measurement.

Tables (3)

Tables Icon

Table 1 Typical Parameters and Constants used in the Absorption Measurement of a Sample Film with the Laser Calorimeter

Tables Icon

Table 2 Absorption Constants and Extinction Coefficients of Fused Silica Substrate Sb2O3 and ZrO2 Films in the UV Region Measured with the Laser Calorimeter

Tables Icon

Table 3 Extinction Coefficients of ZnS and ZrO2 Films in the Visible Region

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

A = absorbed power incident power = G e Δ T m W .
A = C W ( | d T d t | T 0 + | d T d t | T 0 )
A film = A film + substrate - A substrate × t f ,
R 3 R r = R 4 R s
V o = ( R x R x + R 4 - R r R r + R s ) V s = [ R 4 R s α Δ T ( R s + R 4 ) 2 + R s ( R s + R 4 ) Δ T α ] V s , = [ X Δ T Y + Z Δ T ] V s ,
Δ T = V o Y V s X - V o Z ,
α = 1 Δ T s Δ R s R s .
Δ T s = Δ P G m ,
α = Δ R Δ P G e R s .
A = G e Δ T m W .             [ Eq . ( 1 )     in the text ]
C d Δ T d t + G e Δ T = W A ,
Δ T = W A G e [ 1 - exp ( - G e t / C ) ] ,
Δ T m = W A G e .
Δ T = Δ T m exp [ - G e t / C ] .
G e = C ln 2 t 1 / 2 ,
F ( H , a , r , l ) = β / β ° ,
F - 1 ( H , a , r , l ) = 2 ( α 1 2 + λ 1 2 ) × m , n = 1 ( λ n 2 + H 2 ) l ( λ n 2 + H 2 ) l + H cos ( λ n l ) sin ( λ n l ) λ n l × α m 2 exp ( - α m 2 α 2 8 ) J 0 ( α m r ) ( H 2 + α m 2 ) ( α m 2 + λ n 2 ) J 0 2 ( α m b ) ,

Metrics