Abstract

A compact Fourier-transform IR spectrometer without a moving mechanism was developed. The spectrometer consists of a shearing interferometer for forming a spatially distributed interferogram and an IR array detector for observing the interferogram. The shearing interferometer of the developed system is a birefringent interferometer with a Savert plate; the IR array detector is a PtSi Schottky- barrier detector with 4096 elements. The optics and the system configuration are described in detail, and the experimental results of the IR absorption spectra of polystyrene and polyethylene terephthalate film are shown. The developed optics is as small as 20 × 6 cm ϕ in size. The spectral resolution of the prototype system is ~ 27.6 cm−1 between 5000 and 2000 cm−1. The methods and their possibilities of resolution improvement are also described.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Talmi, R. W. Simpson, “Self-scanned array: a multichannel spectrometric detector,” Appl. Opt. 19, 1401–1414 (1980).
    [CrossRef] [PubMed]
  2. D. G. Jones, “Photodiode array detectors in UV–VIS spectroscopy,” Parts I and II, Anal. Chem. 57, 1057A–1073A; 1207A–1214A (1985).
  3. P. M. Epperson, J. V. Sweedler, R. B. Bilhom, G. R. Sims, M. B. Denton, “Applications of charge transfer devices in spectroscopy,” Anal. Chem. 60, 327A–335A (1988).
    [CrossRef]
  4. S. Minami, “Fourier transform spectroscopy using image sensors,” Michrochim. Acta (Wien) 3, 309–324 (1987).
    [CrossRef]
  5. T. Okamoto, S. Kawata, S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23, 269–273 (1984).
    [CrossRef] [PubMed]
  6. H. Aryamanya-Mugisha, R. R. Williams, “A Fourier transform diode array spectrometer for the UV, visible, and near-IR,” Appl. Spectrosc. 39, 693–697 (1985).
    [CrossRef]
  7. T. Okamoto, S. Kawata, S. Minami, “A photodiode array Fourier transform spectrometer based on a birefringent interferometer,” Appl. Spectrosc. 40, 691–695 (1986).
    [CrossRef]
  8. S. Kawata, Y. Inoue, S. Minami, “Compact multichannel FTIR-sensor with a Savert-plate interferometer,” in Seventh International Conference on Fourier Transform Spectroscopy, D. G. Cameron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1145, 567–568 (1989).
    [CrossRef]
  9. T. H. Barnes, “Photodiode array Fourier transform spectrometer with improved dynamic range,” Appl. Opt. 24, 3702–3706 (1985).
    [CrossRef] [PubMed]
  10. J. V. Sweedler, M. B. Denton, “Spatially encoded Fourier transform spectroscopy in the ultraviolet to near-infrared,” Appl. Spectrosc. 43, 1378–1384 (1989).
    [CrossRef]
  11. J. V. Sweedler, R. D. Jalkian, G. R. Sims, M. B. Denton, “Crossed interferometric dispersive spectroscopy,” Appl. Spectrosc. 44, 14–20 (1990).
    [CrossRef]
  12. T. Okamoto, S. Kawata, S. Minami, “Optical method for resolution enhancement in photodiode array Fourier transform spectroscopy,” Appl. Opt. 24, 4221–4225 (1985).
    [CrossRef] [PubMed]
  13. T. H. Barnes, T. Eiji, K. Matsuda, “Heterodyned photodiode array Fourier transform spectrometer,” Appl. Opt. 25, 1864–1866 (1986).
    [CrossRef] [PubMed]
  14. S. Kawata, K. Minami, S. Minami, “Superresolution of Fourier transform spectroscopy data by the maximum entropy method,” Appl. Opt. 22, 3593–3598 (1983).
    [CrossRef] [PubMed]
  15. K. Minami, S. Kawata, S. Minami, “Superresolution of Fourier transform spectra by autoregressive model fitting with singular value decomposition,” Appl. Opt. 24, 162–167 (1985).
    [CrossRef] [PubMed]
  16. K. Vural, “Mercury cadmium telluride short- and medium-wavelength infrared staring focal plane arrays,” Opt. Eng. 26, 201–208 (1987).
  17. A. M. Fowler, R. G. Probst, J. P. Britt, R. R. Joyce, F. C. Gillett, “Evaluation of an indium antimonide hybrid focal plane array for ground-based infrared astronomy,” Opt. Eng. 26, 232–240 (1987).
  18. M. Kimata, M. Denda, N. Yutani, S. Iwade, N. Tsubouchi, “High density Schottky-barrier infrared image sensor,” in Infrared Detectors and Arrays, E. L. Dereniak, ed., Proc. Soc. Photo-Opt. Instrum. Eng.930, 11–25 (1988).
  19. L. R. Hudson, H. F. Tseng, W. L. Wang, G. P. Weckler, “Schottky-barrier infrared focal plane array for spectroscopic applications,” Opt. Eng. 26, 216–222 (1987).
  20. B. Maddoux, “Platinum silicide’s growing challenge,” Laser Optron. 8, 63–67 (1989).
  21. M. Denda, M. Kimata, S. Iwade, N. Yutani, T. Kondo, N. Tsubouchi, “4 × 4096-element SW IR multispectral focal plane array,” in Infrared Technology XIII, I. J. Spiro, ed., Proc. Soc. Photo-Opt. Instrum. Eng.819, 279–286 (1987).
  22. M. Françon, S. Mallick, Polarization Interferometers, (Wiley, New York, 1971), Chap. 2, p. 19.
  23. M. Françon, Optical Interferometry (Academic, New York, 1966), Chap. 7, p. 137.
  24. G. A. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics VII, E. Wolf, ed. (North-Holland, Amsterdam, 1967), Chap. 7, pp. 261–330.
  25. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), Chap. 7, p. 256.
  26. N. Yutani, M. Kimata, M. Denda, S. Iwade, N. Tsubouchi, “IrSi Schottky-barrier infrared image sensor,” in Proceedings of The International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 124–127.
  27. M. Hashimoto, S. Kawata, “Signal to noise ratio of multi-channel Fourier-transform spectroscopy,” submitted to J. Spectrosc. Soc. Jpn.

1990 (1)

1989 (2)

1988 (1)

P. M. Epperson, J. V. Sweedler, R. B. Bilhom, G. R. Sims, M. B. Denton, “Applications of charge transfer devices in spectroscopy,” Anal. Chem. 60, 327A–335A (1988).
[CrossRef]

1987 (4)

S. Minami, “Fourier transform spectroscopy using image sensors,” Michrochim. Acta (Wien) 3, 309–324 (1987).
[CrossRef]

K. Vural, “Mercury cadmium telluride short- and medium-wavelength infrared staring focal plane arrays,” Opt. Eng. 26, 201–208 (1987).

A. M. Fowler, R. G. Probst, J. P. Britt, R. R. Joyce, F. C. Gillett, “Evaluation of an indium antimonide hybrid focal plane array for ground-based infrared astronomy,” Opt. Eng. 26, 232–240 (1987).

L. R. Hudson, H. F. Tseng, W. L. Wang, G. P. Weckler, “Schottky-barrier infrared focal plane array for spectroscopic applications,” Opt. Eng. 26, 216–222 (1987).

1986 (2)

1985 (5)

1984 (1)

1983 (1)

1980 (1)

Aryamanya-Mugisha, H.

Barnes, T. H.

Bilhom, R. B.

P. M. Epperson, J. V. Sweedler, R. B. Bilhom, G. R. Sims, M. B. Denton, “Applications of charge transfer devices in spectroscopy,” Anal. Chem. 60, 327A–335A (1988).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), Chap. 7, p. 256.

Britt, J. P.

A. M. Fowler, R. G. Probst, J. P. Britt, R. R. Joyce, F. C. Gillett, “Evaluation of an indium antimonide hybrid focal plane array for ground-based infrared astronomy,” Opt. Eng. 26, 232–240 (1987).

Denda, M.

M. Denda, M. Kimata, S. Iwade, N. Yutani, T. Kondo, N. Tsubouchi, “4 × 4096-element SW IR multispectral focal plane array,” in Infrared Technology XIII, I. J. Spiro, ed., Proc. Soc. Photo-Opt. Instrum. Eng.819, 279–286 (1987).

M. Kimata, M. Denda, N. Yutani, S. Iwade, N. Tsubouchi, “High density Schottky-barrier infrared image sensor,” in Infrared Detectors and Arrays, E. L. Dereniak, ed., Proc. Soc. Photo-Opt. Instrum. Eng.930, 11–25 (1988).

N. Yutani, M. Kimata, M. Denda, S. Iwade, N. Tsubouchi, “IrSi Schottky-barrier infrared image sensor,” in Proceedings of The International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 124–127.

Denton, M. B.

Eiji, T.

Epperson, P. M.

P. M. Epperson, J. V. Sweedler, R. B. Bilhom, G. R. Sims, M. B. Denton, “Applications of charge transfer devices in spectroscopy,” Anal. Chem. 60, 327A–335A (1988).
[CrossRef]

Fowler, A. M.

A. M. Fowler, R. G. Probst, J. P. Britt, R. R. Joyce, F. C. Gillett, “Evaluation of an indium antimonide hybrid focal plane array for ground-based infrared astronomy,” Opt. Eng. 26, 232–240 (1987).

Françon, M.

M. Françon, Optical Interferometry (Academic, New York, 1966), Chap. 7, p. 137.

M. Françon, S. Mallick, Polarization Interferometers, (Wiley, New York, 1971), Chap. 2, p. 19.

Gillett, F. C.

A. M. Fowler, R. G. Probst, J. P. Britt, R. R. Joyce, F. C. Gillett, “Evaluation of an indium antimonide hybrid focal plane array for ground-based infrared astronomy,” Opt. Eng. 26, 232–240 (1987).

Hashimoto, M.

M. Hashimoto, S. Kawata, “Signal to noise ratio of multi-channel Fourier-transform spectroscopy,” submitted to J. Spectrosc. Soc. Jpn.

Hudson, L. R.

L. R. Hudson, H. F. Tseng, W. L. Wang, G. P. Weckler, “Schottky-barrier infrared focal plane array for spectroscopic applications,” Opt. Eng. 26, 216–222 (1987).

Inoue, Y.

S. Kawata, Y. Inoue, S. Minami, “Compact multichannel FTIR-sensor with a Savert-plate interferometer,” in Seventh International Conference on Fourier Transform Spectroscopy, D. G. Cameron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1145, 567–568 (1989).
[CrossRef]

Iwade, S.

N. Yutani, M. Kimata, M. Denda, S. Iwade, N. Tsubouchi, “IrSi Schottky-barrier infrared image sensor,” in Proceedings of The International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 124–127.

M. Kimata, M. Denda, N. Yutani, S. Iwade, N. Tsubouchi, “High density Schottky-barrier infrared image sensor,” in Infrared Detectors and Arrays, E. L. Dereniak, ed., Proc. Soc. Photo-Opt. Instrum. Eng.930, 11–25 (1988).

M. Denda, M. Kimata, S. Iwade, N. Yutani, T. Kondo, N. Tsubouchi, “4 × 4096-element SW IR multispectral focal plane array,” in Infrared Technology XIII, I. J. Spiro, ed., Proc. Soc. Photo-Opt. Instrum. Eng.819, 279–286 (1987).

Jalkian, R. D.

Jones, D. G.

D. G. Jones, “Photodiode array detectors in UV–VIS spectroscopy,” Parts I and II, Anal. Chem. 57, 1057A–1073A; 1207A–1214A (1985).

Joyce, R. R.

A. M. Fowler, R. G. Probst, J. P. Britt, R. R. Joyce, F. C. Gillett, “Evaluation of an indium antimonide hybrid focal plane array for ground-based infrared astronomy,” Opt. Eng. 26, 232–240 (1987).

Kawata, S.

Kimata, M.

N. Yutani, M. Kimata, M. Denda, S. Iwade, N. Tsubouchi, “IrSi Schottky-barrier infrared image sensor,” in Proceedings of The International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 124–127.

M. Kimata, M. Denda, N. Yutani, S. Iwade, N. Tsubouchi, “High density Schottky-barrier infrared image sensor,” in Infrared Detectors and Arrays, E. L. Dereniak, ed., Proc. Soc. Photo-Opt. Instrum. Eng.930, 11–25 (1988).

M. Denda, M. Kimata, S. Iwade, N. Yutani, T. Kondo, N. Tsubouchi, “4 × 4096-element SW IR multispectral focal plane array,” in Infrared Technology XIII, I. J. Spiro, ed., Proc. Soc. Photo-Opt. Instrum. Eng.819, 279–286 (1987).

Kondo, T.

M. Denda, M. Kimata, S. Iwade, N. Yutani, T. Kondo, N. Tsubouchi, “4 × 4096-element SW IR multispectral focal plane array,” in Infrared Technology XIII, I. J. Spiro, ed., Proc. Soc. Photo-Opt. Instrum. Eng.819, 279–286 (1987).

Maddoux, B.

B. Maddoux, “Platinum silicide’s growing challenge,” Laser Optron. 8, 63–67 (1989).

Mallick, S.

M. Françon, S. Mallick, Polarization Interferometers, (Wiley, New York, 1971), Chap. 2, p. 19.

Matsuda, K.

Minami, K.

Minami, S.

Okamoto, T.

Probst, R. G.

A. M. Fowler, R. G. Probst, J. P. Britt, R. R. Joyce, F. C. Gillett, “Evaluation of an indium antimonide hybrid focal plane array for ground-based infrared astronomy,” Opt. Eng. 26, 232–240 (1987).

Sakai, H.

G. A. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics VII, E. Wolf, ed. (North-Holland, Amsterdam, 1967), Chap. 7, pp. 261–330.

Simpson, R. W.

Sims, G. R.

J. V. Sweedler, R. D. Jalkian, G. R. Sims, M. B. Denton, “Crossed interferometric dispersive spectroscopy,” Appl. Spectrosc. 44, 14–20 (1990).
[CrossRef]

P. M. Epperson, J. V. Sweedler, R. B. Bilhom, G. R. Sims, M. B. Denton, “Applications of charge transfer devices in spectroscopy,” Anal. Chem. 60, 327A–335A (1988).
[CrossRef]

Sweedler, J. V.

Talmi, Y.

Tseng, H. F.

L. R. Hudson, H. F. Tseng, W. L. Wang, G. P. Weckler, “Schottky-barrier infrared focal plane array for spectroscopic applications,” Opt. Eng. 26, 216–222 (1987).

Tsubouchi, N.

N. Yutani, M. Kimata, M. Denda, S. Iwade, N. Tsubouchi, “IrSi Schottky-barrier infrared image sensor,” in Proceedings of The International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 124–127.

M. Kimata, M. Denda, N. Yutani, S. Iwade, N. Tsubouchi, “High density Schottky-barrier infrared image sensor,” in Infrared Detectors and Arrays, E. L. Dereniak, ed., Proc. Soc. Photo-Opt. Instrum. Eng.930, 11–25 (1988).

M. Denda, M. Kimata, S. Iwade, N. Yutani, T. Kondo, N. Tsubouchi, “4 × 4096-element SW IR multispectral focal plane array,” in Infrared Technology XIII, I. J. Spiro, ed., Proc. Soc. Photo-Opt. Instrum. Eng.819, 279–286 (1987).

Vanasse, G. A.

G. A. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics VII, E. Wolf, ed. (North-Holland, Amsterdam, 1967), Chap. 7, pp. 261–330.

Vural, K.

K. Vural, “Mercury cadmium telluride short- and medium-wavelength infrared staring focal plane arrays,” Opt. Eng. 26, 201–208 (1987).

Wang, W. L.

L. R. Hudson, H. F. Tseng, W. L. Wang, G. P. Weckler, “Schottky-barrier infrared focal plane array for spectroscopic applications,” Opt. Eng. 26, 216–222 (1987).

Weckler, G. P.

L. R. Hudson, H. F. Tseng, W. L. Wang, G. P. Weckler, “Schottky-barrier infrared focal plane array for spectroscopic applications,” Opt. Eng. 26, 216–222 (1987).

Williams, R. R.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), Chap. 7, p. 256.

Yutani, N.

M. Denda, M. Kimata, S. Iwade, N. Yutani, T. Kondo, N. Tsubouchi, “4 × 4096-element SW IR multispectral focal plane array,” in Infrared Technology XIII, I. J. Spiro, ed., Proc. Soc. Photo-Opt. Instrum. Eng.819, 279–286 (1987).

N. Yutani, M. Kimata, M. Denda, S. Iwade, N. Tsubouchi, “IrSi Schottky-barrier infrared image sensor,” in Proceedings of The International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 124–127.

M. Kimata, M. Denda, N. Yutani, S. Iwade, N. Tsubouchi, “High density Schottky-barrier infrared image sensor,” in Infrared Detectors and Arrays, E. L. Dereniak, ed., Proc. Soc. Photo-Opt. Instrum. Eng.930, 11–25 (1988).

Anal. Chem. (1)

P. M. Epperson, J. V. Sweedler, R. B. Bilhom, G. R. Sims, M. B. Denton, “Applications of charge transfer devices in spectroscopy,” Anal. Chem. 60, 327A–335A (1988).
[CrossRef]

Appl. Opt. (7)

Appl. Spectrosc. (4)

Laser Optron. (1)

B. Maddoux, “Platinum silicide’s growing challenge,” Laser Optron. 8, 63–67 (1989).

Michrochim. Acta (Wien) (1)

S. Minami, “Fourier transform spectroscopy using image sensors,” Michrochim. Acta (Wien) 3, 309–324 (1987).
[CrossRef]

Opt. Eng. (3)

K. Vural, “Mercury cadmium telluride short- and medium-wavelength infrared staring focal plane arrays,” Opt. Eng. 26, 201–208 (1987).

A. M. Fowler, R. G. Probst, J. P. Britt, R. R. Joyce, F. C. Gillett, “Evaluation of an indium antimonide hybrid focal plane array for ground-based infrared astronomy,” Opt. Eng. 26, 232–240 (1987).

L. R. Hudson, H. F. Tseng, W. L. Wang, G. P. Weckler, “Schottky-barrier infrared focal plane array for spectroscopic applications,” Opt. Eng. 26, 216–222 (1987).

Parts I and II, Anal. Chem. (1)

D. G. Jones, “Photodiode array detectors in UV–VIS spectroscopy,” Parts I and II, Anal. Chem. 57, 1057A–1073A; 1207A–1214A (1985).

Other (9)

M. Kimata, M. Denda, N. Yutani, S. Iwade, N. Tsubouchi, “High density Schottky-barrier infrared image sensor,” in Infrared Detectors and Arrays, E. L. Dereniak, ed., Proc. Soc. Photo-Opt. Instrum. Eng.930, 11–25 (1988).

S. Kawata, Y. Inoue, S. Minami, “Compact multichannel FTIR-sensor with a Savert-plate interferometer,” in Seventh International Conference on Fourier Transform Spectroscopy, D. G. Cameron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1145, 567–568 (1989).
[CrossRef]

M. Denda, M. Kimata, S. Iwade, N. Yutani, T. Kondo, N. Tsubouchi, “4 × 4096-element SW IR multispectral focal plane array,” in Infrared Technology XIII, I. J. Spiro, ed., Proc. Soc. Photo-Opt. Instrum. Eng.819, 279–286 (1987).

M. Françon, S. Mallick, Polarization Interferometers, (Wiley, New York, 1971), Chap. 2, p. 19.

M. Françon, Optical Interferometry (Academic, New York, 1966), Chap. 7, p. 137.

G. A. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics VII, E. Wolf, ed. (North-Holland, Amsterdam, 1967), Chap. 7, pp. 261–330.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), Chap. 7, p. 256.

N. Yutani, M. Kimata, M. Denda, S. Iwade, N. Tsubouchi, “IrSi Schottky-barrier infrared image sensor,” in Proceedings of The International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 124–127.

M. Hashimoto, S. Kawata, “Signal to noise ratio of multi-channel Fourier-transform spectroscopy,” submitted to J. Spectrosc. Soc. Jpn.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical diagram of the MCFT spectrometer based on a Savert plate birefringent interferometer.

Fig. 2
Fig. 2

Schematic optical diagram equivalent to Fig. 1.

Fig. 3
Fig. 3

Savert plate and the paths of ordinary–extraordinary (OE) and extraordinary–ordinary (EO) rays.

Fig. 4
Fig. 4

Total system of te developed MCFT IR spectrometer.

Fig. 5
Fig. 5

Interferograms of the Nichrome wire source: (a) in-phase interferogram; (b) antiphase interferogram; (c) subtraction from (a) by (b); (d) central half of (c).

Fig. 6
Fig. 6

Reconstructed spectum of a nichrome wire source.

Fig. 7
Fig. 7

(a) Reconstructed transmittance spectrum of the polystyrene film by the developed MCFT IR spectrometer. (b) The spectrum of the same sample but by a dispersive grating spectrometer.

Fig. 8
Fig. 8

(a) Reconstructed transmittance spectrum of the polyethylene terephthalate film by a developed MCFT IR spectrometer. (b) The spectrum of the same sample but by a dispersive grating spectrometer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ = d x f
d = n o 2 - n e 2 2 ( n e 2 + n 0 2 ) t ,

Metrics