Abstract

A near-infrared adaptive optics system operating at ≈50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of > 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).
  2. E. K. Hege, J. M. Beckers, P. A. Strittmatter, D. W. McCarthy, “Multiple Mirror Telescope as a phased array telescope,” Appl. Opt. 24, 2565–2576 (1985).
    [CrossRef] [PubMed]
  3. J. R. P. Angel, P. Wizinowich, M. Lloyd-Hart, D. Sandler, “Adaptive optics for array telescopes using neural-network techniques,” Nature (London) 348, 221–224 (1990).
    [CrossRef]
  4. M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).
  5. B. J. Thompson, E. Wolf, “Two-beam interference with partially coherent light,” J. Opt. Soc. Am. 47, 895–902 (1957).
    [CrossRef]
  6. R. K. Tyson, “Measuring phase errors of an array or segmented mirror with a single far-field intensity distribution,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 62–75 (1991).
  7. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965).
    [CrossRef]
  8. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  9. J. M. Beckers, “The VLT interferometer II. Factors affecting on-axis operation,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 364–371 (1990).
  10. B. Hulburd, D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186–1190 (1990).
    [CrossRef]
  11. D. W. McCarthy, B. A. McLeod, D. Barlow, “An infrared array camera for interferometry with the cophased multiple mirror telescope,” in Amplitude and Intensity Spatial Interferometry, J. B. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 496–507 (1990).
  12. C. W. Allen, Astrophysical Quantities, 3rd ed. (Athlone, London, 1973), p. 202.

1990 (2)

J. R. P. Angel, P. Wizinowich, M. Lloyd-Hart, D. Sandler, “Adaptive optics for array telescopes using neural-network techniques,” Nature (London) 348, 221–224 (1990).
[CrossRef]

B. Hulburd, D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186–1190 (1990).
[CrossRef]

1988 (1)

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

1985 (1)

1976 (1)

1965 (1)

1957 (1)

Allen, C. W.

C. W. Allen, Astrophysical Quantities, 3rd ed. (Athlone, London, 1973), p. 202.

Angel, J. R. P.

J. R. P. Angel, P. Wizinowich, M. Lloyd-Hart, D. Sandler, “Adaptive optics for array telescopes using neural-network techniques,” Nature (London) 348, 221–224 (1990).
[CrossRef]

Angel, R.

P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).

Barlow, D.

D. W. McCarthy, B. A. McLeod, D. Barlow, “An infrared array camera for interferometry with the cophased multiple mirror telescope,” in Amplitude and Intensity Spatial Interferometry, J. B. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 496–507 (1990).

Beckers, J. M.

E. K. Hege, J. M. Beckers, P. A. Strittmatter, D. W. McCarthy, “Multiple Mirror Telescope as a phased array telescope,” Appl. Opt. 24, 2565–2576 (1985).
[CrossRef] [PubMed]

J. M. Beckers, “The VLT interferometer II. Factors affecting on-axis operation,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 364–371 (1990).

Colavita, M. M.

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

Colucci, D.

P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).

Dekany, R.

P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).

Fried, D. L.

Hege, E. K.

Hershey, J. L.

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

Hines, B. E.

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

Hughes, J. A.

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

Hulburd, B.

B. Hulburd, D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186–1190 (1990).
[CrossRef]

P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).

Hutter, D. J.

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

Johnston, K. J.

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

Kaplan, G. H.

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

Lloyd-Hart, M.

J. R. P. Angel, P. Wizinowich, M. Lloyd-Hart, D. Sandler, “Adaptive optics for array telescopes using neural-network techniques,” Nature (London) 348, 221–224 (1990).
[CrossRef]

P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).

McCarthy, D.

P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).

McCarthy, D. W.

E. K. Hege, J. M. Beckers, P. A. Strittmatter, D. W. McCarthy, “Multiple Mirror Telescope as a phased array telescope,” Appl. Opt. 24, 2565–2576 (1985).
[CrossRef] [PubMed]

D. W. McCarthy, B. A. McLeod, D. Barlow, “An infrared array camera for interferometry with the cophased multiple mirror telescope,” in Amplitude and Intensity Spatial Interferometry, J. B. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 496–507 (1990).

McLeod, B.

P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).

McLeod, B. A.

D. W. McCarthy, B. A. McLeod, D. Barlow, “An infrared array camera for interferometry with the cophased multiple mirror telescope,” in Amplitude and Intensity Spatial Interferometry, J. B. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 496–507 (1990).

Mozurkewich, D.

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

Noll, R. J.

Sandler, D.

J. R. P. Angel, P. Wizinowich, M. Lloyd-Hart, D. Sandler, “Adaptive optics for array telescopes using neural-network techniques,” Nature (London) 348, 221–224 (1990).
[CrossRef]

B. Hulburd, D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186–1190 (1990).
[CrossRef]

P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).

Shao, M.

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

Simon, R. S.

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

Staelin, D. H.

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

Strittmatter, P. A.

Thompson, B. J.

Tyson, R. K.

R. K. Tyson, “Measuring phase errors of an array or segmented mirror with a single far-field intensity distribution,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 62–75 (1991).

Wittman, D.

P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).

Wizinowich, P.

J. R. P. Angel, P. Wizinowich, M. Lloyd-Hart, D. Sandler, “Adaptive optics for array telescopes using neural-network techniques,” Nature (London) 348, 221–224 (1990).
[CrossRef]

P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).

Wolf, E.

Appl. Opt. (1)

Astron. Astrophys. (1)

M. Shao, M. M. Colavita, B. E. Hines, D. H. Staelin, D. J. Hutter, K. J. Johnston, D. Mozurkewich, R. S. Simon, J. L. Hershey, J. A. Hughes, G. H. Kaplan, “The Mark III stellar interferometer,” Astron. Astrophys. 193, 357–371 (1988).

J. Opt. Soc. Am. (3)

Nature (London) (1)

J. R. P. Angel, P. Wizinowich, M. Lloyd-Hart, D. Sandler, “Adaptive optics for array telescopes using neural-network techniques,” Nature (London) 348, 221–224 (1990).
[CrossRef]

Opt. Eng. (1)

B. Hulburd, D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186–1190 (1990).
[CrossRef]

Other (5)

D. W. McCarthy, B. A. McLeod, D. Barlow, “An infrared array camera for interferometry with the cophased multiple mirror telescope,” in Amplitude and Intensity Spatial Interferometry, J. B. Breckinridge, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1237, 496–507 (1990).

C. W. Allen, Astrophysical Quantities, 3rd ed. (Athlone, London, 1973), p. 202.

J. M. Beckers, “The VLT interferometer II. Factors affecting on-axis operation,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 364–371 (1990).

R. K. Tyson, “Measuring phase errors of an array or segmented mirror with a single far-field intensity distribution,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 62–75 (1991).

P. Wizinowich, M. Lloyd-Hart, B. McLeod, D. Colucci, R. Dekany, D. Wittman, R. Angel, D. McCarthy, B. Hulburd, D. Sandler, “Neural network adaptive optics for the multiple mirror telescope,” in Active and adaptive optical systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1542, 148–158 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Configuration of the six MMT mirrors. The x and y directions correspond to the azimuth and elevation directions on the sky.

Fig. 2
Fig. 2

Simulated two-beam interference intensity profiles for two MMT telescopes (A and C) separated by D = 4.36 m at λ = 2.2 μm: (a) The incoherent image is multiplied by the intereference term of Eq. (1) to produce the coherent image. Zero tilt and zero OPD was assumed between the two telescopes. (b), (c) The effect on the coherent image of introducing an OPD = λ/2 (dashed curve) and a relative tilt (0.2 arcsec) between the two telescopes.

Fig. 3
Fig. 3

Timing diagram for real-time adaptive phasing of two MMT telescopes: SCSI, small computer systems interface; DACS, digital-to-analog converters.

Fig. 4
Fig. 4

Integrated images (1000 coadded frames) with (left) and without (center) adaptive phasing–bright pixel tracking. The top image, I is from a single telescope. Images II III and IV are from the interference of two MMT telescopes. The intensity profile (right) is a cut perpendicular to the fringes. The parameters for each image are listed in Table 1.

Fig. 5
Fig. 5

Temporal evolution of the phase difference between two MMT telescopes, as measured by the position of the brightest pixel on a given fringe, for image III of Fig. 4. The adaptive phasing system was off for (a) the top plot and on for (b) and (c) the middle and bottom plots. The bottom plot is the integration of the phase corrections made to obtain the middle plot.

Fig. 6
Fig. 6

These plots are similar to the uncorrected and corrected phase plots of Fig. 5, except that a cosine function, instead of the brightest pixel location, was used to obtain a more accurate determination of phase.

Fig. 7
Fig. 7

(a) Intensity of the brightest pixel of the corrected image set III as a function of the difference in azimuth between the centroid and bright pixel locations. (b) The same plot for the intensity and location of the brightest pixel within the central 6 × 6 pixel field (i.e., on the tracked fringe).

Fig. 8
Fig. 8

The best individual images, as judged by the brightest pixel intensity, from the data sets used to obtain the corrected integrated images II and III.

Fig. 9
Fig. 9

Infrared versus visible energy centroid for a single MMT telescope in azimuth.

Fig. 10
Fig. 10

Average change in image position versus time for a single MMT telescope.

Tables (1)

Tables Icon

Table 1 Observational Parameters and Data Analysis for the Integrated Images of Fig. 4a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( α x , α y ) = I a + I b + 2 I a I b cos ϕ = 2 I a ( 1 + cos ϕ )             if I a = I b ,
σ 1 2 = 1.030 ( d / r 0 ) 5 / 3 ,
σ 3 2 = 0.134 ( d / r 0 ) 5 / 3 ,
σ T 2 = [ ( 2 π / λ ) ( α rms d / 4 ) ] 2 .
ϕ P = 2.62 ( D / r 0 ) 5 / 6 ,
SR = exp ( - σ 2 ) .
γ = I max - I min I max + I min ,
I = I max 2 [ sinc ( ϕ Δ λ λ ) cos ϕ + 1 ] .
β = i I i cos ( 2 π x i f - ϕ )

Metrics