Abstract

To maximize the efficiency of dielectric diffractive optical elements, we optimized the local groove shape using the rigorous diffraction theory of multilevel surface-relief gratings.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. 24, pp. 1–40.
    [CrossRef]
  2. R. Petit, ed., Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  3. N. C. Gallagher, S. S. Naqvi, “Diffractive optics: scalar and non-scalar design analysis,” in Holographic Optics: Optically and Computer Generated, I. N. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1052, 32–40 (1989).
  4. J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. N. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 116–124(1990).
  5. T. Shiono, M. Kitagawa, K. Setsune, T. Mitsuyu, “Reflection micro-Fresnel lenses and their use in an integrated focus sensor,” Appl. Opt. 28, 3434–3442 (1989).
    [CrossRef] [PubMed]
  6. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef] [PubMed]
  7. K. Iga, M. Oikawa, S. Misawa, J. Banno, Y. Kokobun, “Stacked planar optics: an application of the planar microlens,” Appl. Opt. 21, 3456–3460 (1982).
    [CrossRef] [PubMed]
  8. J. Jahns, S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
    [CrossRef] [PubMed]
  9. A. Vasara, E. Noponen, J. Turunen, J. M. Miller, M. R. Taghizadeh, J. Tuovinen, “Rigorous diffraction theory of binary optical interconnects,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1507, 224–238 (1991).
  10. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am. 68, 1206–1210 (1978).
    [CrossRef]
  11. A. Roger, D. Maystre, “Inverse scattering method in electromagnetic optics: application to diffraction gratings,” J. Opt. Soc. Am. 70, 1483–1495 (1980).
    [CrossRef]
  12. E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992).
    [CrossRef]
  13. A. Vasara, J. Turunen, A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
    [CrossRef] [PubMed]
  14. M. G. Moharam, T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]

1992

1990

1989

1983

1982

1980

1978

Banno, J.

Bergstrom, J.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. N. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 116–124(1990).

Cox, J. A.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. N. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 116–124(1990).

Friberg, A. T.

Fritz, B.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. N. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 116–124(1990).

Gallagher, N. C.

N. C. Gallagher, S. S. Naqvi, “Diffractive optics: scalar and non-scalar design analysis,” in Holographic Optics: Optically and Computer Generated, I. N. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1052, 32–40 (1989).

Gaylord, T. K.

Huang, A.

Iga, K.

Jahns, J.

Kitagawa, M.

Knop, K.

Kokobun, Y.

Lee, J.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. N. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 116–124(1990).

Maystre, D.

Miller, J. M.

E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992).
[CrossRef]

A. Vasara, E. Noponen, J. Turunen, J. M. Miller, M. R. Taghizadeh, J. Tuovinen, “Rigorous diffraction theory of binary optical interconnects,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1507, 224–238 (1991).

Misawa, S.

Mitsuyu, T.

Moharam, M. G.

Naqvi, S. S.

N. C. Gallagher, S. S. Naqvi, “Diffractive optics: scalar and non-scalar design analysis,” in Holographic Optics: Optically and Computer Generated, I. N. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1052, 32–40 (1989).

Nelson, S.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. N. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 116–124(1990).

Nishihara, H.

H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. 24, pp. 1–40.
[CrossRef]

Noponen, E.

E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992).
[CrossRef]

A. Vasara, E. Noponen, J. Turunen, J. M. Miller, M. R. Taghizadeh, J. Tuovinen, “Rigorous diffraction theory of binary optical interconnects,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1507, 224–238 (1991).

Oikawa, M.

Roger, A.

Setsune, K.

Shiono, T.

Suhara, T.

H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. 24, pp. 1–40.
[CrossRef]

Taghizadeh, M. R.

E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992).
[CrossRef]

A. Vasara, E. Noponen, J. Turunen, J. M. Miller, M. R. Taghizadeh, J. Tuovinen, “Rigorous diffraction theory of binary optical interconnects,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1507, 224–238 (1991).

Tuovinen, J.

A. Vasara, E. Noponen, J. Turunen, J. M. Miller, M. R. Taghizadeh, J. Tuovinen, “Rigorous diffraction theory of binary optical interconnects,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1507, 224–238 (1991).

Turunen, J.

E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992).
[CrossRef]

A. Vasara, J. Turunen, A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
[CrossRef] [PubMed]

A. Vasara, E. Noponen, J. Turunen, J. M. Miller, M. R. Taghizadeh, J. Tuovinen, “Rigorous diffraction theory of binary optical interconnects,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1507, 224–238 (1991).

Vasara, A.

E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992).
[CrossRef]

A. Vasara, J. Turunen, A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
[CrossRef] [PubMed]

A. Vasara, E. Noponen, J. Turunen, J. M. Miller, M. R. Taghizadeh, J. Tuovinen, “Rigorous diffraction theory of binary optical interconnects,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1507, 224–238 (1991).

Walker, S. J.

Werner, T.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. N. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 116–124(1990).

Appl. Opt.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Other

A. Vasara, E. Noponen, J. Turunen, J. M. Miller, M. R. Taghizadeh, J. Tuovinen, “Rigorous diffraction theory of binary optical interconnects,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1507, 224–238 (1991).

H. Nishihara, T. Suhara, “Micro Fresnel lenses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. 24, pp. 1–40.
[CrossRef]

R. Petit, ed., Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).
[CrossRef]

N. C. Gallagher, S. S. Naqvi, “Diffractive optics: scalar and non-scalar design analysis,” in Holographic Optics: Optically and Computer Generated, I. N. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1052, 32–40 (1989).

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. N. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 116–124(1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

First-order diffraction efficiency as a function of the grating period for dielectric (refractive index 1.5) staircase surface relief gratings with K depth levels (K = 3,4,8,16): (a) TE polarization, (b) TM polarization. The horizontal lines represent the asymptotic predictions of Fourier optics.

Fig. 2
Fig. 2

(a) TE-mode first-order efficiency of a four-level staircase grating reproduced from Fig. 1(a) compared with optimized profiles when the transition points xj alone, and those together with the total relief depth h, are used as optimization parameters, (b) Optimization for both states of polarization simultaneously with a fixed relief depth.

Tables (2)

Tables Icon

Table 1 Parameters and Performance of Some Optimized Four-Level Gratings

Tables Icon

Table 2 Parameters and Performance of the Gratings in Fig. 2(b)

Metrics