Abstract

The velocimetry method of self-mixing, i.e., the feedback of Doppler-scattered light into the laser cavity, is used for the measurement of liquid flow and of blood perfusion in human tissue. The method is elucidated by the registration of the blood perfusion of a finger under repeated occlusion of the veins in the upper arm and with the velocity measurement of a liquid flow containing scattering particles.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bonner, R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
    [CrossRef] [PubMed]
  2. G. E. Nilsson, T. Tenland, P. A. Oberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
    [CrossRef] [PubMed]
  3. A. P. Shephard, P. A. Oberg, Laser-Doppler Flowmetry (Kluwer, Boston, 1990).
  4. T. P. Newson, A. Obeid, R. S. Wolton, D. Boggett, P. Rolfe, “Laser Doppler velocimetry: the problem of fibre movement artifacts,” J. Biomed. Eng. 9, 169–172 (1987).
    [CrossRef] [PubMed]
  5. F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, T. M. Smits, “Mini-laser Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984).
    [CrossRef] [PubMed]
  6. H. E. Suichies, J. G. Aarnoudse, A. Okken, H. W. Jentink, F. F. M. de Mul, J. Greve, “Forehead skin blood flow in normal neonates during active and quiet sleep, measured with a diode laser Doppler instrument,” Acta Paediatr. Scand. 77, 220–225 (1988).
    [CrossRef] [PubMed]
  7. H. W. Jentink, “Laser Doppler velocimetry using diode lasers,” Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1989).
  8. F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference on Laser Anemometry, Advances and Applications, Swansea, Wales, 1989, P. Turner, ed. (University of Manchester, Manchester, 1989), p. IL 3.1–17.
  9. H. E. Suichies, C. Brouwer, J. G. Aarnoudse, H. W. Jentink, F. F. M. de Mul, J. Greve, “Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth,” Early Human Dev. 23, 1–8 (1990).
    [CrossRef]
  10. M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1, 723–726 (1968).
  11. S. Shinohara, A. Mochizuki, H. Yoshida, M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25, 1417–1419 (1986).
    [CrossRef] [PubMed]
  12. E. T. Shimizu, “Directional discrimination in the self-mixing type laser Doppler velocimeter,” Appl. Opt. 26, 4541–4544 (1987).
    [CrossRef] [PubMed]
  13. H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
    [CrossRef] [PubMed]
  14. G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence on feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
    [CrossRef]
  15. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988).
    [CrossRef]
  16. P. J. de Groot, G. M. Gallatin, “Backscatter modulation velocimetry with and without an external cavity laser diode,” Opt. Lett. 14, 165–167 (1989).
    [CrossRef] [PubMed]
  17. M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassell, J. G. Aarnoudse, “In vivo blood flow velocity measurments using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511-12, 120–128 (1991).
  18. M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
    [CrossRef] [PubMed]
  19. F. Hoeben, F. F. M. de Mul, H. S. D. Stokkink, M. H. Koelink, J. Greve, “A monitoring device for pressurized-air driven diaphragm-based artificial heart assist device,” J. Clin. Phys. Physiol. Meas. (to be published).
  20. H. W. Jentink, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “On the construction of small laser Doppler velocimeters using diode lasers,” Int. J. OptoElectron. 4, 405–410 (1989).

1992 (1)

1990 (1)

H. E. Suichies, C. Brouwer, J. G. Aarnoudse, H. W. Jentink, F. F. M. de Mul, J. Greve, “Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth,” Early Human Dev. 23, 1–8 (1990).
[CrossRef]

1989 (2)

H. W. Jentink, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “On the construction of small laser Doppler velocimeters using diode lasers,” Int. J. OptoElectron. 4, 405–410 (1989).

P. J. de Groot, G. M. Gallatin, “Backscatter modulation velocimetry with and without an external cavity laser diode,” Opt. Lett. 14, 165–167 (1989).
[CrossRef] [PubMed]

1988 (2)

H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
[CrossRef] [PubMed]

H. E. Suichies, J. G. Aarnoudse, A. Okken, H. W. Jentink, F. F. M. de Mul, J. Greve, “Forehead skin blood flow in normal neonates during active and quiet sleep, measured with a diode laser Doppler instrument,” Acta Paediatr. Scand. 77, 220–225 (1988).
[CrossRef] [PubMed]

1987 (2)

T. P. Newson, A. Obeid, R. S. Wolton, D. Boggett, P. Rolfe, “Laser Doppler velocimetry: the problem of fibre movement artifacts,” J. Biomed. Eng. 9, 169–172 (1987).
[CrossRef] [PubMed]

E. T. Shimizu, “Directional discrimination in the self-mixing type laser Doppler velocimeter,” Appl. Opt. 26, 4541–4544 (1987).
[CrossRef] [PubMed]

1986 (1)

1984 (2)

F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, T. M. Smits, “Mini-laser Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984).
[CrossRef] [PubMed]

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence on feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

1981 (1)

1980 (1)

G. E. Nilsson, T. Tenland, P. A. Oberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
[CrossRef] [PubMed]

1968 (1)

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1, 723–726 (1968).

Aarnoudse, J. G.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

H. E. Suichies, C. Brouwer, J. G. Aarnoudse, H. W. Jentink, F. F. M. de Mul, J. Greve, “Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth,” Early Human Dev. 23, 1–8 (1990).
[CrossRef]

H. W. Jentink, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “On the construction of small laser Doppler velocimeters using diode lasers,” Int. J. OptoElectron. 4, 405–410 (1989).

H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
[CrossRef] [PubMed]

H. E. Suichies, J. G. Aarnoudse, A. Okken, H. W. Jentink, F. F. M. de Mul, J. Greve, “Forehead skin blood flow in normal neonates during active and quiet sleep, measured with a diode laser Doppler instrument,” Acta Paediatr. Scand. 77, 220–225 (1988).
[CrossRef] [PubMed]

F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, T. M. Smits, “Mini-laser Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984).
[CrossRef] [PubMed]

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference on Laser Anemometry, Advances and Applications, Swansea, Wales, 1989, P. Turner, ed. (University of Manchester, Manchester, 1989), p. IL 3.1–17.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassell, J. G. Aarnoudse, “In vivo blood flow velocity measurments using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511-12, 120–128 (1991).

Acket, G. A.

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence on feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Boggett, D.

T. P. Newson, A. Obeid, R. S. Wolton, D. Boggett, P. Rolfe, “Laser Doppler velocimetry: the problem of fibre movement artifacts,” J. Biomed. Eng. 9, 169–172 (1987).
[CrossRef] [PubMed]

Bonner, R.

Brouwer, C.

H. E. Suichies, C. Brouwer, J. G. Aarnoudse, H. W. Jentink, F. F. M. de Mul, J. Greve, “Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth,” Early Human Dev. 23, 1–8 (1990).
[CrossRef]

Dassel, A.

Dassell, A. C. M.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassell, J. G. Aarnoudse, “In vivo blood flow velocity measurments using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511-12, 120–128 (1991).

de Groot, P. J.

de Mul, F. F. M.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

H. E. Suichies, C. Brouwer, J. G. Aarnoudse, H. W. Jentink, F. F. M. de Mul, J. Greve, “Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth,” Early Human Dev. 23, 1–8 (1990).
[CrossRef]

H. W. Jentink, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “On the construction of small laser Doppler velocimeters using diode lasers,” Int. J. OptoElectron. 4, 405–410 (1989).

H. E. Suichies, J. G. Aarnoudse, A. Okken, H. W. Jentink, F. F. M. de Mul, J. Greve, “Forehead skin blood flow in normal neonates during active and quiet sleep, measured with a diode laser Doppler instrument,” Acta Paediatr. Scand. 77, 220–225 (1988).
[CrossRef] [PubMed]

H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
[CrossRef] [PubMed]

F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, T. M. Smits, “Mini-laser Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984).
[CrossRef] [PubMed]

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference on Laser Anemometry, Advances and Applications, Swansea, Wales, 1989, P. Turner, ed. (University of Manchester, Manchester, 1989), p. IL 3.1–17.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassell, J. G. Aarnoudse, “In vivo blood flow velocity measurments using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511-12, 120–128 (1991).

F. Hoeben, F. F. M. de Mul, H. S. D. Stokkink, M. H. Koelink, J. Greve, “A monitoring device for pressurized-air driven diaphragm-based artificial heart assist device,” J. Clin. Phys. Physiol. Meas. (to be published).

den Boef, A. J.

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence on feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Gallatin, G. M.

Graaff, R.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassell, J. G. Aarnoudse, “In vivo blood flow velocity measurments using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511-12, 120–128 (1991).

Greve, J.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

H. E. Suichies, C. Brouwer, J. G. Aarnoudse, H. W. Jentink, F. F. M. de Mul, J. Greve, “Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth,” Early Human Dev. 23, 1–8 (1990).
[CrossRef]

H. W. Jentink, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “On the construction of small laser Doppler velocimeters using diode lasers,” Int. J. OptoElectron. 4, 405–410 (1989).

H. E. Suichies, J. G. Aarnoudse, A. Okken, H. W. Jentink, F. F. M. de Mul, J. Greve, “Forehead skin blood flow in normal neonates during active and quiet sleep, measured with a diode laser Doppler instrument,” Acta Paediatr. Scand. 77, 220–225 (1988).
[CrossRef] [PubMed]

H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
[CrossRef] [PubMed]

F. F. M. de Mul, J. van Spijker, D. van der Plas, J. Greve, J. G. Aarnoudse, T. M. Smits, “Mini-laser Doppler (blood) flow monitor with diode laser source and detection integrated in the probe,” Appl. Opt. 23, 2970–2973 (1984).
[CrossRef] [PubMed]

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference on Laser Anemometry, Advances and Applications, Swansea, Wales, 1989, P. Turner, ed. (University of Manchester, Manchester, 1989), p. IL 3.1–17.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassell, J. G. Aarnoudse, “In vivo blood flow velocity measurments using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511-12, 120–128 (1991).

F. Hoeben, F. F. M. de Mul, H. S. D. Stokkink, M. H. Koelink, J. Greve, “A monitoring device for pressurized-air driven diaphragm-based artificial heart assist device,” J. Clin. Phys. Physiol. Meas. (to be published).

Helsdingen, M. A.

H. W. Jentink, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “On the construction of small laser Doppler velocimeters using diode lasers,” Int. J. OptoElectron. 4, 405–410 (1989).

Hoeben, F.

F. Hoeben, F. F. M. de Mul, H. S. D. Stokkink, M. H. Koelink, J. Greve, “A monitoring device for pressurized-air driven diaphragm-based artificial heart assist device,” J. Clin. Phys. Physiol. Meas. (to be published).

Jentink, H. W.

H. E. Suichies, C. Brouwer, J. G. Aarnoudse, H. W. Jentink, F. F. M. de Mul, J. Greve, “Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth,” Early Human Dev. 23, 1–8 (1990).
[CrossRef]

H. W. Jentink, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “On the construction of small laser Doppler velocimeters using diode lasers,” Int. J. OptoElectron. 4, 405–410 (1989).

H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
[CrossRef] [PubMed]

H. E. Suichies, J. G. Aarnoudse, A. Okken, H. W. Jentink, F. F. M. de Mul, J. Greve, “Forehead skin blood flow in normal neonates during active and quiet sleep, measured with a diode laser Doppler instrument,” Acta Paediatr. Scand. 77, 220–225 (1988).
[CrossRef] [PubMed]

H. W. Jentink, “Laser Doppler velocimetry using diode lasers,” Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1989).

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference on Laser Anemometry, Advances and Applications, Swansea, Wales, 1989, P. Turner, ed. (University of Manchester, Manchester, 1989), p. IL 3.1–17.

Koelink, M. H.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassell, J. G. Aarnoudse, “In vivo blood flow velocity measurments using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511-12, 120–128 (1991).

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference on Laser Anemometry, Advances and Applications, Swansea, Wales, 1989, P. Turner, ed. (University of Manchester, Manchester, 1989), p. IL 3.1–17.

F. Hoeben, F. F. M. de Mul, H. S. D. Stokkink, M. H. Koelink, J. Greve, “A monitoring device for pressurized-air driven diaphragm-based artificial heart assist device,” J. Clin. Phys. Physiol. Meas. (to be published).

Lenstra, D.

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence on feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Mochizuki, A.

Newson, T. P.

T. P. Newson, A. Obeid, R. S. Wolton, D. Boggett, P. Rolfe, “Laser Doppler velocimetry: the problem of fibre movement artifacts,” J. Biomed. Eng. 9, 169–172 (1987).
[CrossRef] [PubMed]

Nilsson, G. E.

G. E. Nilsson, T. Tenland, P. A. Oberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
[CrossRef] [PubMed]

Nossal, R.

Obeid, A.

T. P. Newson, A. Obeid, R. S. Wolton, D. Boggett, P. Rolfe, “Laser Doppler velocimetry: the problem of fibre movement artifacts,” J. Biomed. Eng. 9, 169–172 (1987).
[CrossRef] [PubMed]

Oberg, P. A.

G. E. Nilsson, T. Tenland, P. A. Oberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
[CrossRef] [PubMed]

A. P. Shephard, P. A. Oberg, Laser-Doppler Flowmetry (Kluwer, Boston, 1990).

Okken, A.

H. E. Suichies, J. G. Aarnoudse, A. Okken, H. W. Jentink, F. F. M. de Mul, J. Greve, “Forehead skin blood flow in normal neonates during active and quiet sleep, measured with a diode laser Doppler instrument,” Acta Paediatr. Scand. 77, 220–225 (1988).
[CrossRef] [PubMed]

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988).
[CrossRef]

Rolfe, P.

T. P. Newson, A. Obeid, R. S. Wolton, D. Boggett, P. Rolfe, “Laser Doppler velocimetry: the problem of fibre movement artifacts,” J. Biomed. Eng. 9, 169–172 (1987).
[CrossRef] [PubMed]

Rudd, M. J.

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1, 723–726 (1968).

Shephard, A. P.

A. P. Shephard, P. A. Oberg, Laser-Doppler Flowmetry (Kluwer, Boston, 1990).

Shimizu, E. T.

Shinohara, S.

Slot, M.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassell, J. G. Aarnoudse, “In vivo blood flow velocity measurments using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511-12, 120–128 (1991).

Smits, T. M.

Stokkink, H. S. D.

F. Hoeben, F. F. M. de Mul, H. S. D. Stokkink, M. H. Koelink, J. Greve, “A monitoring device for pressurized-air driven diaphragm-based artificial heart assist device,” J. Clin. Phys. Physiol. Meas. (to be published).

Suichies, H. E.

H. E. Suichies, C. Brouwer, J. G. Aarnoudse, H. W. Jentink, F. F. M. de Mul, J. Greve, “Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth,” Early Human Dev. 23, 1–8 (1990).
[CrossRef]

H. W. Jentink, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “On the construction of small laser Doppler velocimeters using diode lasers,” Int. J. OptoElectron. 4, 405–410 (1989).

H. E. Suichies, J. G. Aarnoudse, A. Okken, H. W. Jentink, F. F. M. de Mul, J. Greve, “Forehead skin blood flow in normal neonates during active and quiet sleep, measured with a diode laser Doppler instrument,” Acta Paediatr. Scand. 77, 220–225 (1988).
[CrossRef] [PubMed]

H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
[CrossRef] [PubMed]

Sumi, M.

Tenland, T.

G. E. Nilsson, T. Tenland, P. A. Oberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
[CrossRef] [PubMed]

van der Plas, D.

van Spijker, J.

Verbeek, B. H.

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence on feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

Wolton, R. S.

T. P. Newson, A. Obeid, R. S. Wolton, D. Boggett, P. Rolfe, “Laser Doppler velocimetry: the problem of fibre movement artifacts,” J. Biomed. Eng. 9, 169–172 (1987).
[CrossRef] [PubMed]

Yoshida, H.

Acta Paediatr. Scand. (1)

H. E. Suichies, J. G. Aarnoudse, A. Okken, H. W. Jentink, F. F. M. de Mul, J. Greve, “Forehead skin blood flow in normal neonates during active and quiet sleep, measured with a diode laser Doppler instrument,” Acta Paediatr. Scand. 77, 220–225 (1988).
[CrossRef] [PubMed]

Appl. Opt. (6)

Early Human Dev. (1)

H. E. Suichies, C. Brouwer, J. G. Aarnoudse, H. W. Jentink, F. F. M. de Mul, J. Greve, “Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth,” Early Human Dev. 23, 1–8 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence on feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

G. E. Nilsson, T. Tenland, P. A. Oberg, “A new instrument for continuous measurement of blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
[CrossRef] [PubMed]

Int. J. OptoElectron. (1)

H. W. Jentink, M. A. Helsdingen, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “On the construction of small laser Doppler velocimeters using diode lasers,” Int. J. OptoElectron. 4, 405–410 (1989).

J. Biomed. Eng. (1)

T. P. Newson, A. Obeid, R. S. Wolton, D. Boggett, P. Rolfe, “Laser Doppler velocimetry: the problem of fibre movement artifacts,” J. Biomed. Eng. 9, 169–172 (1987).
[CrossRef] [PubMed]

J. Phys. (1)

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1, 723–726 (1968).

Opt. Lett. (1)

Other (6)

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassell, J. G. Aarnoudse, “In vivo blood flow velocity measurments using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1511-12, 120–128 (1991).

F. Hoeben, F. F. M. de Mul, H. S. D. Stokkink, M. H. Koelink, J. Greve, “A monitoring device for pressurized-air driven diaphragm-based artificial heart assist device,” J. Clin. Phys. Physiol. Meas. (to be published).

K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988).
[CrossRef]

H. W. Jentink, “Laser Doppler velocimetry using diode lasers,” Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1989).

F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference on Laser Anemometry, Advances and Applications, Swansea, Wales, 1989, P. Turner, ed. (University of Manchester, Manchester, 1989), p. IL 3.1–17.

A. P. Shephard, P. A. Oberg, Laser-Doppler Flowmetry (Kluwer, Boston, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic drawing of a self-mixing laser-Doppler velocimeter with (a) and without (b) an imaging system. L, semiconductor laser; D, photodiode, mounted in the laser housing; ℓ, imaging lens system (e.g., gradient-index lens); P, Peltier temperature stabilizer (if necessary); T, moving target (e.g., tissue perfusion).

Fig. 2
Fig. 2

Self-mixing signal of a harmonically moving target. Upper trace, motion of the target; lower trace, self-mixing signal, with double frequency; a.u. arbitrary units. For more details, see text.

Fig. 3
Fig. 3

Block diagram of the signal processing unit calculating the square root of the (weighted or normalized) second moment of the power spectrum of the frequency distribution of the Doppler signal, according to Eq. (9). The electrically programmable ROM (EPROM) contains software for the following operations, which were repetitively performed (25-Hz duty cycle) on 1024 samples (60-kHz duty cycle) of the analog–digital (AD) converter signal: (1) Time derivation, squaring, and time averaging (moving time average), which lead to the second moment ∫ ω2S(ω)dω; (2) Squaring and time averaging, which lead to the zeroth moment ∫ S(ω)dω; (3) Division of these values, followed by the square root, which lead to the weighted second moment. In this unit a similar process can be included, but with a bandpass filter in a suitable region above 30 kHz, which represents noise, to be subtracted from the three calculated variables mentioned above. This step turned out to be unnecessary with these measurements.

Fig. 4
Fig. 4

Flow velocity measurements; frequency spectra were obtained with self-mixing. The symbols indicate the paths of the lines. Higher harmonics are present. Curves: (-x-) 19 kHz, 3.0 cm/s; (-●-) 15.9 kHz, 2.4 cm/s; (—) 10.3 kHz, 1.6cm/s; (—) 0.77 kHz, 1.2 cm/s.

Fig. 5
Fig. 5

Comparison of the peak frequencies of the MIRA (differential) laser-Doppler velocimetry measurements and the self-mixing measurements at different flow velocities. The respective frequencies are expressed in velocity values by using the MIRA calibration and Eq. (1) for self-mixing. The line shows the linear fit.

Fig. 6
Fig. 6

Perfusion signals at the fingertip that were obtained with a focused laser spot: 1, the blood perfusion signal; 2, the signal proportional to the particle density; 3, the average flow velocity signal. (a) Free tissue surface, (b) fixed tissue surface (attached to cover glass); * indicates disturbances caused by a variation in light reflection at the fingertip.

Fig. 7
Fig. 7

Perfusion signals at the fingertip obtained with an unfocused beam directly at the cover glass of the laser housing: The same signals are used as in Fig. 6. The perfusion signal contains almost the basic frequency (the heartbeat) only, while the number-of-particles signal and the averaged flow signal also contain higher harmonics, as is clearly seen in Fig. 8.

Fig. 8
Fig. 8

Frequency spectrum of the averaged blood flow signal of Fig. 7, showing not only the basic heartbeat frequency but also higher harmonics caused by periodic details of the heartbeat signal.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ f = 2 n v cos θ / λ ,
g c - g th = - κ L cos ( 2 π ν τ ext ) ,
τ ext = 2 L ext / c ,
κ = r 2 , ext r 2 , s ( 1 - r 2 , s 2 ) ,
Δ P = const . ( g c - g th ) .
Δ ϕ L = 2 π τ L ( ν - ν th ) + κ ( 1 + α 2 ) 1 / 2 × sin ( 2 π ν τ ext + arctan α ) ,
C = τ ext τ L κ ( 1 + α 2 ) 1 / 2 .
L ext = L 0 + L sin ( 2 π f t t + const . ) ,
ω 2 = ω a ω b ω 2 S ( ω ) d ω ω a ω b S ( ω ) d ω .

Metrics