Abstract

We carry out the calibration of an ultraviolet spectrometer by using a cryogenic electrical-substitution radiometer and intensity-stabilized laser sources. A comparison of the error budgets for the laser-based calibration described here and for a calibration using a type-FEL tungsten spectral-irradiance standard indicates that this technique could provide an improvement of a factor of ~ 3 in the uncertainty of the spectrometer calibration, resulting in an absolute accuracy (standard deviation of 3) of ~ 1% at 257 nm. The technique described here might significantly improve the accuracy of calibrations on NASA ozone-monitoring and solar ultraviolet-monitoring spectrophotometers when used to complement present procedures that employ lamps and the SURF II synchrotron ultraviolet radiation facility at the National Institute of Standards and Technology.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Stolarski, “Global ozone evolution,” in Proceedings of the 28th Liege Astrophysical Colloquium, P. Crutzen, J. C. Gerard, R. Zander, eds. (Universite De Liege, Institut D’Astrophysique, Belgium, 1989), pp. 163–169.
  2. G. Brasseur, “Key solar flux measurements for atmospheric physics and chemistry,” in Solar Radiative Output Variation Proceedings, P. Foukal, ed. (The National Center of Atmospheric Research, Boulder, Colo., 1987), pp. 26–48.
  3. J. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” Natl. Bur. Stand. Spec. Publ. 20, 33–37 (1987).
  4. P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers,” Appl. Opt. 29, 988–993 (1990).
    [CrossRef] [PubMed]
  5. P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic cavity radiometers as detectors and calibration standards for remote sensing,” in Long-Term Monitoring of the Earth’s Radiation Budget, B. R. Barkstrom, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 1299, 92–100 (1990).
  6. H. J. Kostkowski, J. L. Lean, R. D. Saunders, L. R. Hughey, “Comparison of the NBS SURF and tungsten ultraviolet irradiance standards,” Appl. Opt. 25, 3297–3306 (1986).
    [CrossRef] [PubMed]
  7. J. L. Lean, H. J. Kostkowski, R. D. Saunders, L. R. Hughey, “Comparison of the NIST SURF and argon miniarc irradiance standards at 214 nm,” Appl. Opt. 28, 3246–3253 (1989).
    [CrossRef] [PubMed]
  8. E. F. Zalewski, W. K. Gladden, “Absolute spectral irradiance measurements based on the predicted quantum efficiency of a silicon photodiode,” Opt. Pura Appl. 17, 133–140 (1984).
  9. E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
    [CrossRef] [PubMed]
  10. J. Lean, Naval Research Laboratory, Washington, D. C. 20375 (personal communication).
  11. R. Madden, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication).

1990 (1)

1989 (1)

1987 (1)

J. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” Natl. Bur. Stand. Spec. Publ. 20, 33–37 (1987).

1986 (1)

1984 (1)

E. F. Zalewski, W. K. Gladden, “Absolute spectral irradiance measurements based on the predicted quantum efficiency of a silicon photodiode,” Opt. Pura Appl. 17, 133–140 (1984).

1983 (1)

Brasseur, G.

G. Brasseur, “Key solar flux measurements for atmospheric physics and chemistry,” in Solar Radiative Output Variation Proceedings, P. Foukal, ed. (The National Center of Atmospheric Research, Boulder, Colo., 1987), pp. 26–48.

Duda, C. R.

Foukal, P. V.

P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers,” Appl. Opt. 29, 988–993 (1990).
[CrossRef] [PubMed]

P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic cavity radiometers as detectors and calibration standards for remote sensing,” in Long-Term Monitoring of the Earth’s Radiation Budget, B. R. Barkstrom, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 1299, 92–100 (1990).

Gladden, W. K.

E. F. Zalewski, W. K. Gladden, “Absolute spectral irradiance measurements based on the predicted quantum efficiency of a silicon photodiode,” Opt. Pura Appl. 17, 133–140 (1984).

Hoyt, C.

P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers,” Appl. Opt. 29, 988–993 (1990).
[CrossRef] [PubMed]

P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic cavity radiometers as detectors and calibration standards for remote sensing,” in Long-Term Monitoring of the Earth’s Radiation Budget, B. R. Barkstrom, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 1299, 92–100 (1990).

Hughey, L. R.

Jackson, J. K.

J. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” Natl. Bur. Stand. Spec. Publ. 20, 33–37 (1987).

Kochling, H.

P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers,” Appl. Opt. 29, 988–993 (1990).
[CrossRef] [PubMed]

P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic cavity radiometers as detectors and calibration standards for remote sensing,” in Long-Term Monitoring of the Earth’s Radiation Budget, B. R. Barkstrom, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 1299, 92–100 (1990).

Kostkowski, H. J.

Lean, J.

J. Lean, Naval Research Laboratory, Washington, D. C. 20375 (personal communication).

Lean, J. L.

Madden, R.

R. Madden, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication).

McSparron, D. A.

J. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” Natl. Bur. Stand. Spec. Publ. 20, 33–37 (1987).

Miller, P.

P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers,” Appl. Opt. 29, 988–993 (1990).
[CrossRef] [PubMed]

P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic cavity radiometers as detectors and calibration standards for remote sensing,” in Long-Term Monitoring of the Earth’s Radiation Budget, B. R. Barkstrom, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 1299, 92–100 (1990).

Saunders, R. D.

Stolarski, R.

R. Stolarski, “Global ozone evolution,” in Proceedings of the 28th Liege Astrophysical Colloquium, P. Crutzen, J. C. Gerard, R. Zander, eds. (Universite De Liege, Institut D’Astrophysique, Belgium, 1989), pp. 163–169.

Walker, J.

J. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” Natl. Bur. Stand. Spec. Publ. 20, 33–37 (1987).

Zalewski, E. F.

E. F. Zalewski, W. K. Gladden, “Absolute spectral irradiance measurements based on the predicted quantum efficiency of a silicon photodiode,” Opt. Pura Appl. 17, 133–140 (1984).

E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
[CrossRef] [PubMed]

Appl. Opt. (4)

Natl. Bur. Stand. Spec. Publ. (1)

J. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” Natl. Bur. Stand. Spec. Publ. 20, 33–37 (1987).

Opt. Pura Appl. (1)

E. F. Zalewski, W. K. Gladden, “Absolute spectral irradiance measurements based on the predicted quantum efficiency of a silicon photodiode,” Opt. Pura Appl. 17, 133–140 (1984).

Other (5)

J. Lean, Naval Research Laboratory, Washington, D. C. 20375 (personal communication).

R. Madden, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication).

P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic cavity radiometers as detectors and calibration standards for remote sensing,” in Long-Term Monitoring of the Earth’s Radiation Budget, B. R. Barkstrom, ed., Proc. Soc. Photo-Opt. Instrum. Eng., 1299, 92–100 (1990).

R. Stolarski, “Global ozone evolution,” in Proceedings of the 28th Liege Astrophysical Colloquium, P. Crutzen, J. C. Gerard, R. Zander, eds. (Universite De Liege, Institut D’Astrophysique, Belgium, 1989), pp. 163–169.

G. Brasseur, “Key solar flux measurements for atmospheric physics and chemistry,” in Solar Radiative Output Variation Proceedings, P. Foukal, ed. (The National Center of Atmospheric Research, Boulder, Colo., 1987), pp. 26–48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calibration system components arranged on an optical table.

Fig. 2
Fig. 2

Cryogenic electrical-substitution radiometer Dewar vessel and associated electronics.

Fig. 3
Fig. 3

Data for the spectrometer and diode comparison readings of the irradiance source at 257 nm: open squares, readings with the spectrometer at 0° orientation; crosses, readings with the spectrometer rotated 90°; solid line, average value.

Fig. 4
Fig. 4

Spectrometer readings of FEL spectral-irradiance standard at 257 nm: Symbols are the same as in Fig. 3. Vertical scale 10−9 A.

Fig. 5
Fig. 5

Laser-based and FEL-based spectrometer calibration results: open squares, June 1991 laser-based calibration; crosses, July 1991 laser-based calibration; solid line, average.

Tables (1)

Tables Icon

Table 1 Errors Associated with Calibrations Using a FEL Source and Using the Laser-Based System

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R D = S D / P R ,
E = S D / R D A ,
R ( 257 nm ) = S S / E ,
S S = E ABS R ( 257 nm ) λ 0 - b λ 0 + b E REL × ( λ ) R REL ( λ ) T ( λ - λ 0 ) d λ ,

Metrics