Abstract

We report the demonstration and characterization of a 2 × 8 optical reconfigurable interconnect with laser diodes at 780 nm and a ferroelectric liquid crystal spatial light modulator in conjunction with a photorefractive barium titanate crystal. The photorefractive holograms improve the energy efficiency by 6 to 10 dB over the conventional approach.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
    [CrossRef]
  2. D. Psaltis, D. Brady, C. Gu, S. Lin, “Holography in artificial neural network,” Nature (London) 343, 325–330 (1990).
    [CrossRef]
  3. A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” IEEE Trans. Comput. C-20, 50–60 (1987).
  4. J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
    [CrossRef]
  5. P. Yeh, A. Chiou, J. Hong, “Optical interconnections using photorefractive dynamic holograms,” Appl. Opt. 27, 2093–2096 (1988).
    [CrossRef] [PubMed]
  6. A. Chiou, P. Yeh, “Energy efficiency of optical interconnections using photorefractive holograms,” Appl. Opt. 29, 1111–1117 (1990).
    [CrossRef] [PubMed]
  7. P. Yeh, A. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 28, 328–343 (1989).
  8. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  9. D. W. Vahey, “A nonlinear coupled-wave theory of holographic storage in ferroelectric materials,” J. Appl. Phys. 46, 3510–3515 (1975).
    [CrossRef]
  10. H. Rajbenbach, A. Delboulbe, J. P. Huignard, “Noise suppression in photorefractive image amplifier,” Opt. Lett. 14, 1275–1277 (1989).
    [CrossRef] [PubMed]
  11. A. Chiou, P. Yeh, “Photorefractive optical interconnect with high-speed reconfiguration,” to be presented at the 1992 Conference on Lasers and Electro-Optics.

1990 (2)

D. Psaltis, D. Brady, C. Gu, S. Lin, “Holography in artificial neural network,” Nature (London) 343, 325–330 (1990).
[CrossRef]

A. Chiou, P. Yeh, “Energy efficiency of optical interconnections using photorefractive holograms,” Appl. Opt. 29, 1111–1117 (1990).
[CrossRef] [PubMed]

1989 (2)

H. Rajbenbach, A. Delboulbe, J. P. Huignard, “Noise suppression in photorefractive image amplifier,” Opt. Lett. 14, 1275–1277 (1989).
[CrossRef] [PubMed]

P. Yeh, A. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 28, 328–343 (1989).

1988 (1)

1987 (1)

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” IEEE Trans. Comput. C-20, 50–60 (1987).

1985 (1)

J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
[CrossRef]

1984 (1)

See, for example, J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1975 (1)

D. W. Vahey, “A nonlinear coupled-wave theory of holographic storage in ferroelectric materials,” J. Appl. Phys. 46, 3510–3515 (1975).
[CrossRef]

Athale, R. A.

See, for example, J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Beckwith, P.

P. Yeh, A. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 28, 328–343 (1989).

Brady, D.

D. Psaltis, D. Brady, C. Gu, S. Lin, “Holography in artificial neural network,” Nature (London) 343, 325–330 (1990).
[CrossRef]

Chang, T.

P. Yeh, A. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 28, 328–343 (1989).

Chiou, A.

A. Chiou, P. Yeh, “Energy efficiency of optical interconnections using photorefractive holograms,” Appl. Opt. 29, 1111–1117 (1990).
[CrossRef] [PubMed]

P. Yeh, A. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 28, 328–343 (1989).

P. Yeh, A. Chiou, J. Hong, “Optical interconnections using photorefractive dynamic holograms,” Appl. Opt. 27, 2093–2096 (1988).
[CrossRef] [PubMed]

A. Chiou, P. Yeh, “Photorefractive optical interconnect with high-speed reconfiguration,” to be presented at the 1992 Conference on Lasers and Electro-Optics.

Delboulbe, A.

Goodman, J. W.

J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
[CrossRef]

See, for example, J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Gu, C.

D. Psaltis, D. Brady, C. Gu, S. Lin, “Holography in artificial neural network,” Nature (London) 343, 325–330 (1990).
[CrossRef]

Hong, J.

P. Yeh, A. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 28, 328–343 (1989).

P. Yeh, A. Chiou, J. Hong, “Optical interconnections using photorefractive dynamic holograms,” Appl. Opt. 27, 2093–2096 (1988).
[CrossRef] [PubMed]

Huignard, J. P.

Jenkins, B. K.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” IEEE Trans. Comput. C-20, 50–60 (1987).

Khoshnevisan, M.

P. Yeh, A. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 28, 328–343 (1989).

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Kung, S. Y.

See, for example, J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Leonberger, F. I.

See, for example, J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Lin, S.

D. Psaltis, D. Brady, C. Gu, S. Lin, “Holography in artificial neural network,” Nature (London) 343, 325–330 (1990).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Psaltis, D.

D. Psaltis, D. Brady, C. Gu, S. Lin, “Holography in artificial neural network,” Nature (London) 343, 325–330 (1990).
[CrossRef]

Raghavendra, C. S.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” IEEE Trans. Comput. C-20, 50–60 (1987).

Rajbenbach, H.

Sawchuk, A. A.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” IEEE Trans. Comput. C-20, 50–60 (1987).

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Vahey, D. W.

D. W. Vahey, “A nonlinear coupled-wave theory of holographic storage in ferroelectric materials,” J. Appl. Phys. 46, 3510–3515 (1975).
[CrossRef]

Varma, A.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” IEEE Trans. Comput. C-20, 50–60 (1987).

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Yeh, P.

A. Chiou, P. Yeh, “Energy efficiency of optical interconnections using photorefractive holograms,” Appl. Opt. 29, 1111–1117 (1990).
[CrossRef] [PubMed]

P. Yeh, A. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 28, 328–343 (1989).

P. Yeh, A. Chiou, J. Hong, “Optical interconnections using photorefractive dynamic holograms,” Appl. Opt. 27, 2093–2096 (1988).
[CrossRef] [PubMed]

A. Chiou, P. Yeh, “Photorefractive optical interconnect with high-speed reconfiguration,” to be presented at the 1992 Conference on Lasers and Electro-Optics.

Appl. Opt. (2)

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

IEEE Trans. Comput. (1)

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” IEEE Trans. Comput. C-20, 50–60 (1987).

J. Appl. Phys. (1)

D. W. Vahey, “A nonlinear coupled-wave theory of holographic storage in ferroelectric materials,” J. Appl. Phys. 46, 3510–3515 (1975).
[CrossRef]

Nature (London) (1)

D. Psaltis, D. Brady, C. Gu, S. Lin, “Holography in artificial neural network,” Nature (London) 343, 325–330 (1990).
[CrossRef]

Opt. Acta (1)

J. W. Goodman, “Fan-in and fan-out with optical interconnections,” Opt. Acta 32, 1489–1496 (1985).
[CrossRef]

Opt. Eng. (1)

P. Yeh, A. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 28, 328–343 (1989).

Opt. Lett. (1)

Proc. IEEE (1)

See, for example, J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI Systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Other (1)

A. Chiou, P. Yeh, “Photorefractive optical interconnect with high-speed reconfiguration,” to be presented at the 1992 Conference on Lasers and Electro-Optics.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram illustrating the basic principle of a photorefractive reconfigurable interconnect.

Fig. 2
Fig. 2

Optical energy or power distribution in a reconfigurable N × N permutation network by using (a) a conventional approach or (b) photorefractive holograms.

Fig. 3
Fig. 3

Theoretical results for optimum mirror reflectance versus the number of fan-out channels.

Fig. 4
Fig. 4

Theoretical results for maximum energy efficiency (under an optimum beam-splitting condition) versus the number of fan-out channels.

Fig. 5
Fig. 5

Experimental layout for a 2 × 8 photorefractive reconfigurable interconnect.

Fig. 6
Fig. 6

Intensity distribution at the detector plane from one of the laser sources.

Fig. 7
Fig. 7

Example of signal and noise measurement for a 2 × 8 reconfigurable interconnect.

Fig. 8
Fig. 8

Example of reconfiguration (switching between two interconnection patterns) while both lasers are in a cw mode.

Fig. 9
Fig. 9

Example of reconfiguration for a 2 × 8 photorefractive interconnect (switching between two interconnection patterns) while the two lasers are independently modulated at a different frequency.

Tables (2)

Tables Icon

Table I Some Representative Elements of Energy Efficiency and Signal-to-Noise Ratio: the Experimental Results

Tables Icon

Table II Comparison of Energy Loss (Gain) In Each Stage of the 2 × 8 Reconfigurable Interconnect with a Conventional Approach versus the Corresponding Photorefractive Approach

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I s ( L ) = I s ( 0 ) ( r + 1 ) exp ( Γ L ) [ r + exp ( Γ L ) ] exp ( - α L ) ,
I s ( L ) = I 0 R exp [ ( Γ - α ) L ] ( t / N ) 1 - R ( 1 - t / N ) 1 + R [ exp ( Γ L ) t N - 1 ] .
E I s ( L ) / I 0 = R exp [ ( Γ - α ) L ] ( t / N ) 1 - R ( 1 - t / N ) 1 + R [ exp ( Γ L ) t N - 1 ] .
R o = 1 G - 1 [ ( G - t / N 1 - t / N ) 1 / 2 - 1 ] ,
E max = G G - 1 [ 2 ( 1 G - 1 - 1 ) ( G - t / N 1 - t / N ) 1 / 2 + 2 ( 1 - t / N G - 1 ) + 1 ] exp ( - α L ) ,
G exp ( Γ L ) t N .
R o = 1 [ exp ( Γ L ) t N ] 1 / 2 + 1 ,
E max = exp ( Γ L ) t N { [ exp ( Γ L ) t N ] 1 / 2 + 1 } 2 exp ( - α L ) .
R o = 1 [ exp ( Γ L ) t N ] 1 / 2 ,
E max = exp ( - α L ) .
E ij = optical power received by detector i from source j through window ij total power transmitted by source j ,
X ij = optical power received by detector i from source j through window ij maximum optical power received by detector i when all the windows in the i - th row are off .

Metrics