Abstract

Electromagnetic optical interactions between a small metal sphere and a metallic surface are studied by using a self-consistent approach in the presence of an external field. The intensity scattered by the metal particle is given for different polarizations of the incident field. This quantity, determined from a local treatment of the response function of the two interacting systems, exhibits a spatial dependence with respect to the approach distance close to that obtained from recent experimental studies. Moreover, at large separation, retardation effects included from a dipolar propagator give rise to pseudoperiodic oscillations such as the ones observed in reflection near-field optical microscopy. In the near-field range, plasmon modes of the whole system probe surface introduce narrow resonances in the scattered intensity versus the probe–sample separation.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [CrossRef]
  2. U. Ch. Fischer, D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–462 (1989); D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Adv. Opt. Electron Microsc. 12, 243–312 (1991).
    [CrossRef] [PubMed]
  3. D. W. Pohl, W. Denk, U. Dürig, “Optical stethoscopy: imaging with λ/20,” in Micron and Submicron Integrated Circuit Metrology, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.565, 56–61 (1986).
  4. U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 51, 3318–3327 (1986).
    [CrossRef]
  5. U. Ch. Fischer, “Optical characteristics of 0.1μ circular apertures in a metal film as light sources for ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
    [CrossRef]
  6. E. Betzig, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy (NSOM),” Biophys. J. 41, 269–279 (1986); A. Harootunian, E. Betzig, M. Isaacson, A. Lewis, “Super-resolution fluorescence near-field scanning microscopy, Appl. Phys. Lett. 49, 674–676 (1986).
    [CrossRef]
  7. E. Betzig, M. Isaacson, A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987); E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  8. R. C. Reddick, R. J. Warmack, T. L. Ferell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
    [CrossRef]
  9. D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
    [CrossRef]
  10. F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
  11. D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
    [CrossRef] [PubMed]
  12. B. Labani, C. Girard, D. Courjon, D. Van Labeke, “Optical interaction between a dielectric tip and a nanometric lattice: implications for near-field microscopy,” J. Opt. Soc. Am. B 7, 936–941 (1990).
    [CrossRef]
  13. C. Girard, M. Spajer, “Model for reflection near field optical microscopy,” Appl. Opt. 29, 3726–3732 (1990).
    [CrossRef] [PubMed]
  14. C. Girard, D. Courjon, “Model for scanning tunneling optical microscopy: a microscopic self-consistent approach,” Phys. Rev. B42, 9340–9349 (1990).
  15. M. Meier, A. Wokaun, P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2, 931–949 (1985).
    [CrossRef]
  16. A. Wokaun, “Surface enhancement of optical fields: mechanisms and applications,” Mol. Phys. 56, 1–33 (1985).
    [CrossRef]
  17. H. Abe, K. Manzel, W. Schulze, M. Moskovits, D. P. Dilella, “Surface-enhanced Raman spectroscopy of CO adsorbed on colloidal silver particles,” J. Chem. Phys. 74, 792–797 (1981).
    [CrossRef]
  18. A. Adams, P. K. Hansma, “Light emission from small metal particles and thin metal films excited by tunneling electrons,” Phys. Rev. B 23, 3597–3601 (1981).
    [CrossRef]
  19. M. J. Bloemer, J. G. Mantovani, J. P. Goudonnet, D. R. James, R. J. Warmack, T. L. Ferrel, “Observation of driven surface-plasmon modes in metal particulates above tunnel functions,” Phys. Rev. B 35, 5947–5954 (1987).
    [CrossRef]
  20. R. L. Hightower, C. B. Richardson, H. B. Lin, J. D. Eversole, A. J. Campillo, “Measurements of scattering of light from layered microspheres,” Opt. Lett. 13, 946–948 (1988).
    [CrossRef] [PubMed]
  21. P. K. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983), and references therein.
    [CrossRef]
  22. H. Metiu, “Surface enhanced spectroscopy” Prog. Surf. Sci. 17, 153–320 (1984).
    [CrossRef]
  23. T. T. Takemori, M. Inoue, K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
    [CrossRef]
  24. C. Girard, C. Girardet, “Self-consistent interaction potential for a molecule adsorbed on a dielectric surface: a symmetric top molecule on an ionic crystal,” J. Chem. Phys. 86, 6531–6539 (1987).
    [CrossRef]
  25. A. M. Marvin, F. Toigo, “Van der Waals interaction between a point particle and a metallic surface,” Phys. Rev. A 25, 782–802 (1982).
    [CrossRef]
  26. T. S. Rahman, A. A. Maradudin, “Effect of surface roughness on the image potential,” Phys. Rev. B 21, 504–521 (1980).
    [CrossRef]
  27. G. S. Agarwal, D. N. Pattanayak, E. Wolf, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447–1473 (1974).
    [CrossRef]
  28. C. Girard, F. Hache, “Dynamical properties of molecules physisorbed on a metal particle,” Mol. Phys. 70, 811–824 (1990).
    [CrossRef]

1990 (5)

1989 (3)

U. Ch. Fischer, D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–462 (1989); D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Adv. Opt. Electron Microsc. 12, 243–312 (1991).
[CrossRef] [PubMed]

R. C. Reddick, R. J. Warmack, T. L. Ferell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

1988 (1)

1987 (4)

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987); E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

M. J. Bloemer, J. G. Mantovani, J. P. Goudonnet, D. R. James, R. J. Warmack, T. L. Ferrel, “Observation of driven surface-plasmon modes in metal particulates above tunnel functions,” Phys. Rev. B 35, 5947–5954 (1987).
[CrossRef]

T. T. Takemori, M. Inoue, K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
[CrossRef]

C. Girard, C. Girardet, “Self-consistent interaction potential for a molecule adsorbed on a dielectric surface: a symmetric top molecule on an ionic crystal,” J. Chem. Phys. 86, 6531–6539 (1987).
[CrossRef]

1986 (2)

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 51, 3318–3327 (1986).
[CrossRef]

E. Betzig, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy (NSOM),” Biophys. J. 41, 269–279 (1986); A. Harootunian, E. Betzig, M. Isaacson, A. Lewis, “Super-resolution fluorescence near-field scanning microscopy, Appl. Phys. Lett. 49, 674–676 (1986).
[CrossRef]

1985 (3)

U. Ch. Fischer, “Optical characteristics of 0.1μ circular apertures in a metal film as light sources for ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
[CrossRef]

A. Wokaun, “Surface enhancement of optical fields: mechanisms and applications,” Mol. Phys. 56, 1–33 (1985).
[CrossRef]

M. Meier, A. Wokaun, P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2, 931–949 (1985).
[CrossRef]

1984 (2)

H. Metiu, “Surface enhanced spectroscopy” Prog. Surf. Sci. 17, 153–320 (1984).
[CrossRef]

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

1983 (1)

P. K. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983), and references therein.
[CrossRef]

1982 (1)

A. M. Marvin, F. Toigo, “Van der Waals interaction between a point particle and a metallic surface,” Phys. Rev. A 25, 782–802 (1982).
[CrossRef]

1981 (2)

H. Abe, K. Manzel, W. Schulze, M. Moskovits, D. P. Dilella, “Surface-enhanced Raman spectroscopy of CO adsorbed on colloidal silver particles,” J. Chem. Phys. 74, 792–797 (1981).
[CrossRef]

A. Adams, P. K. Hansma, “Light emission from small metal particles and thin metal films excited by tunneling electrons,” Phys. Rev. B 23, 3597–3601 (1981).
[CrossRef]

1980 (1)

T. S. Rahman, A. A. Maradudin, “Effect of surface roughness on the image potential,” Phys. Rev. B 21, 504–521 (1980).
[CrossRef]

1974 (1)

G. S. Agarwal, D. N. Pattanayak, E. Wolf, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447–1473 (1974).
[CrossRef]

Abe, H.

H. Abe, K. Manzel, W. Schulze, M. Moskovits, D. P. Dilella, “Surface-enhanced Raman spectroscopy of CO adsorbed on colloidal silver particles,” J. Chem. Phys. 74, 792–797 (1981).
[CrossRef]

Adams, A.

A. Adams, P. K. Hansma, “Light emission from small metal particles and thin metal films excited by tunneling electrons,” Phys. Rev. B 23, 3597–3601 (1981).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal, D. N. Pattanayak, E. Wolf, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447–1473 (1974).
[CrossRef]

Aravind, P. K.

P. K. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983), and references therein.
[CrossRef]

Betzig, E.

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987); E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

E. Betzig, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy (NSOM),” Biophys. J. 41, 269–279 (1986); A. Harootunian, E. Betzig, M. Isaacson, A. Lewis, “Super-resolution fluorescence near-field scanning microscopy, Appl. Phys. Lett. 49, 674–676 (1986).
[CrossRef]

Bloemer, M. J.

M. J. Bloemer, J. G. Mantovani, J. P. Goudonnet, D. R. James, R. J. Warmack, T. L. Ferrel, “Observation of driven surface-plasmon modes in metal particulates above tunnel functions,” Phys. Rev. B 35, 5947–5954 (1987).
[CrossRef]

Campillo, A. J.

Courjon, D.

de Fornel, F.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).

Denk, W.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

D. W. Pohl, W. Denk, U. Dürig, “Optical stethoscopy: imaging with λ/20,” in Micron and Submicron Integrated Circuit Metrology, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.565, 56–61 (1986).

Dilella, D. P.

H. Abe, K. Manzel, W. Schulze, M. Moskovits, D. P. Dilella, “Surface-enhanced Raman spectroscopy of CO adsorbed on colloidal silver particles,” J. Chem. Phys. 74, 792–797 (1981).
[CrossRef]

Dürig, U.

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 51, 3318–3327 (1986).
[CrossRef]

D. W. Pohl, W. Denk, U. Dürig, “Optical stethoscopy: imaging with λ/20,” in Micron and Submicron Integrated Circuit Metrology, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.565, 56–61 (1986).

Eversole, J. D.

Ferell, T. L.

R. C. Reddick, R. J. Warmack, T. L. Ferell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Ferrel, T. L.

M. J. Bloemer, J. G. Mantovani, J. P. Goudonnet, D. R. James, R. J. Warmack, T. L. Ferrel, “Observation of driven surface-plasmon modes in metal particulates above tunnel functions,” Phys. Rev. B 35, 5947–5954 (1987).
[CrossRef]

Fischer, U. Ch.

U. Ch. Fischer, D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–462 (1989); D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Adv. Opt. Electron Microsc. 12, 243–312 (1991).
[CrossRef] [PubMed]

U. Ch. Fischer, “Optical characteristics of 0.1μ circular apertures in a metal film as light sources for ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
[CrossRef]

Girard, C.

C. Girard, F. Hache, “Dynamical properties of molecules physisorbed on a metal particle,” Mol. Phys. 70, 811–824 (1990).
[CrossRef]

C. Girard, M. Spajer, “Model for reflection near field optical microscopy,” Appl. Opt. 29, 3726–3732 (1990).
[CrossRef] [PubMed]

B. Labani, C. Girard, D. Courjon, D. Van Labeke, “Optical interaction between a dielectric tip and a nanometric lattice: implications for near-field microscopy,” J. Opt. Soc. Am. B 7, 936–941 (1990).
[CrossRef]

C. Girard, D. Courjon, “Model for scanning tunneling optical microscopy: a microscopic self-consistent approach,” Phys. Rev. B42, 9340–9349 (1990).

C. Girard, C. Girardet, “Self-consistent interaction potential for a molecule adsorbed on a dielectric surface: a symmetric top molecule on an ionic crystal,” J. Chem. Phys. 86, 6531–6539 (1987).
[CrossRef]

Girardet, C.

C. Girard, C. Girardet, “Self-consistent interaction potential for a molecule adsorbed on a dielectric surface: a symmetric top molecule on an ionic crystal,” J. Chem. Phys. 86, 6531–6539 (1987).
[CrossRef]

Goudonnet, J. P.

M. J. Bloemer, J. G. Mantovani, J. P. Goudonnet, D. R. James, R. J. Warmack, T. L. Ferrel, “Observation of driven surface-plasmon modes in metal particulates above tunnel functions,” Phys. Rev. B 35, 5947–5954 (1987).
[CrossRef]

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).

Hache, F.

C. Girard, F. Hache, “Dynamical properties of molecules physisorbed on a metal particle,” Mol. Phys. 70, 811–824 (1990).
[CrossRef]

Hansma, P. K.

A. Adams, P. K. Hansma, “Light emission from small metal particles and thin metal films excited by tunneling electrons,” Phys. Rev. B 23, 3597–3601 (1981).
[CrossRef]

Harootunian, A.

E. Betzig, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy (NSOM),” Biophys. J. 41, 269–279 (1986); A. Harootunian, E. Betzig, M. Isaacson, A. Lewis, “Super-resolution fluorescence near-field scanning microscopy, Appl. Phys. Lett. 49, 674–676 (1986).
[CrossRef]

Hightower, R. L.

Inoue, M.

T. T. Takemori, M. Inoue, K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
[CrossRef]

Isaacson, M.

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987); E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

E. Betzig, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy (NSOM),” Biophys. J. 41, 269–279 (1986); A. Harootunian, E. Betzig, M. Isaacson, A. Lewis, “Super-resolution fluorescence near-field scanning microscopy, Appl. Phys. Lett. 49, 674–676 (1986).
[CrossRef]

James, D. R.

M. J. Bloemer, J. G. Mantovani, J. P. Goudonnet, D. R. James, R. J. Warmack, T. L. Ferrel, “Observation of driven surface-plasmon modes in metal particulates above tunnel functions,” Phys. Rev. B 35, 5947–5954 (1987).
[CrossRef]

Kratschmer, E.

E. Betzig, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy (NSOM),” Biophys. J. 41, 269–279 (1986); A. Harootunian, E. Betzig, M. Isaacson, A. Lewis, “Super-resolution fluorescence near-field scanning microscopy, Appl. Phys. Lett. 49, 674–676 (1986).
[CrossRef]

Labani, B.

Lanz, M.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Leblanc, S.

Lesniewska, E.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).

Lewis, A.

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987); E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Liao, P. F.

Lin, H. B.

Mantovani, J. G.

M. J. Bloemer, J. G. Mantovani, J. P. Goudonnet, D. R. James, R. J. Warmack, T. L. Ferrel, “Observation of driven surface-plasmon modes in metal particulates above tunnel functions,” Phys. Rev. B 35, 5947–5954 (1987).
[CrossRef]

Manzel, K.

H. Abe, K. Manzel, W. Schulze, M. Moskovits, D. P. Dilella, “Surface-enhanced Raman spectroscopy of CO adsorbed on colloidal silver particles,” J. Chem. Phys. 74, 792–797 (1981).
[CrossRef]

Maradudin, A. A.

T. S. Rahman, A. A. Maradudin, “Effect of surface roughness on the image potential,” Phys. Rev. B 21, 504–521 (1980).
[CrossRef]

Marvin, A. M.

A. M. Marvin, F. Toigo, “Van der Waals interaction between a point particle and a metallic surface,” Phys. Rev. A 25, 782–802 (1982).
[CrossRef]

Meier, M.

Metiu, H.

H. Metiu, “Surface enhanced spectroscopy” Prog. Surf. Sci. 17, 153–320 (1984).
[CrossRef]

P. K. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983), and references therein.
[CrossRef]

Moskovits, M.

H. Abe, K. Manzel, W. Schulze, M. Moskovits, D. P. Dilella, “Surface-enhanced Raman spectroscopy of CO adsorbed on colloidal silver particles,” J. Chem. Phys. 74, 792–797 (1981).
[CrossRef]

Ohtaka, K.

T. T. Takemori, M. Inoue, K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
[CrossRef]

Pattanayak, D. N.

G. S. Agarwal, D. N. Pattanayak, E. Wolf, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447–1473 (1974).
[CrossRef]

Pohl, D. W.

U. Ch. Fischer, D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–462 (1989); D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Adv. Opt. Electron Microsc. 12, 243–312 (1991).
[CrossRef] [PubMed]

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 51, 3318–3327 (1986).
[CrossRef]

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

D. W. Pohl, W. Denk, U. Dürig, “Optical stethoscopy: imaging with λ/20,” in Micron and Submicron Integrated Circuit Metrology, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.565, 56–61 (1986).

Rahman, T. S.

T. S. Rahman, A. A. Maradudin, “Effect of surface roughness on the image potential,” Phys. Rev. B 21, 504–521 (1980).
[CrossRef]

Reddick, R. C.

R. C. Reddick, R. J. Warmack, T. L. Ferell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Richardson, C. B.

Rohner, F.

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 51, 3318–3327 (1986).
[CrossRef]

Salomon, L.

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).

Sarayeddine, K.

Schulze, W.

H. Abe, K. Manzel, W. Schulze, M. Moskovits, D. P. Dilella, “Surface-enhanced Raman spectroscopy of CO adsorbed on colloidal silver particles,” J. Chem. Phys. 74, 792–797 (1981).
[CrossRef]

Spajer, M.

Takemori, T. T.

T. T. Takemori, M. Inoue, K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
[CrossRef]

Toigo, F.

A. M. Marvin, F. Toigo, “Van der Waals interaction between a point particle and a metallic surface,” Phys. Rev. A 25, 782–802 (1982).
[CrossRef]

Van Labeke, D.

Vigoureux, J. M.

Warmack, R. J.

R. C. Reddick, R. J. Warmack, T. L. Ferell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

M. J. Bloemer, J. G. Mantovani, J. P. Goudonnet, D. R. James, R. J. Warmack, T. L. Ferrel, “Observation of driven surface-plasmon modes in metal particulates above tunnel functions,” Phys. Rev. B 35, 5947–5954 (1987).
[CrossRef]

Wokaun, A.

Wolf, E.

G. S. Agarwal, D. N. Pattanayak, E. Wolf, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447–1473 (1974).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987); E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Biophys. J. (1)

E. Betzig, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy (NSOM),” Biophys. J. 41, 269–279 (1986); A. Harootunian, E. Betzig, M. Isaacson, A. Lewis, “Super-resolution fluorescence near-field scanning microscopy, Appl. Phys. Lett. 49, 674–676 (1986).
[CrossRef]

J. Appl. Phys. (1)

U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 51, 3318–3327 (1986).
[CrossRef]

J. Chem. Phys. (2)

H. Abe, K. Manzel, W. Schulze, M. Moskovits, D. P. Dilella, “Surface-enhanced Raman spectroscopy of CO adsorbed on colloidal silver particles,” J. Chem. Phys. 74, 792–797 (1981).
[CrossRef]

C. Girard, C. Girardet, “Self-consistent interaction potential for a molecule adsorbed on a dielectric surface: a symmetric top molecule on an ionic crystal,” J. Chem. Phys. 86, 6531–6539 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Soc. Jpn. (1)

T. T. Takemori, M. Inoue, K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987).
[CrossRef]

J. Vac. Sci. Technol. B (1)

U. Ch. Fischer, “Optical characteristics of 0.1μ circular apertures in a metal film as light sources for ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985).
[CrossRef]

Mol. Phys. (2)

A. Wokaun, “Surface enhancement of optical fields: mechanisms and applications,” Mol. Phys. 56, 1–33 (1985).
[CrossRef]

C. Girard, F. Hache, “Dynamical properties of molecules physisorbed on a metal particle,” Mol. Phys. 70, 811–824 (1990).
[CrossRef]

Opt. Commun. (1)

D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

C. Girard, D. Courjon, “Model for scanning tunneling optical microscopy: a microscopic self-consistent approach,” Phys. Rev. B42, 9340–9349 (1990).

Phys. Rev. A (1)

A. M. Marvin, F. Toigo, “Van der Waals interaction between a point particle and a metallic surface,” Phys. Rev. A 25, 782–802 (1982).
[CrossRef]

Phys. Rev. B (5)

T. S. Rahman, A. A. Maradudin, “Effect of surface roughness on the image potential,” Phys. Rev. B 21, 504–521 (1980).
[CrossRef]

G. S. Agarwal, D. N. Pattanayak, E. Wolf, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447–1473 (1974).
[CrossRef]

A. Adams, P. K. Hansma, “Light emission from small metal particles and thin metal films excited by tunneling electrons,” Phys. Rev. B 23, 3597–3601 (1981).
[CrossRef]

M. J. Bloemer, J. G. Mantovani, J. P. Goudonnet, D. R. James, R. J. Warmack, T. L. Ferrel, “Observation of driven surface-plasmon modes in metal particulates above tunnel functions,” Phys. Rev. B 35, 5947–5954 (1987).
[CrossRef]

R. C. Reddick, R. J. Warmack, T. L. Ferell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

U. Ch. Fischer, D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–462 (1989); D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Adv. Opt. Electron Microsc. 12, 243–312 (1991).
[CrossRef] [PubMed]

Prog. Surf. Sci. (1)

H. Metiu, “Surface enhanced spectroscopy” Prog. Surf. Sci. 17, 153–320 (1984).
[CrossRef]

Surf. Sci. (1)

P. K. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983), and references therein.
[CrossRef]

Other (2)

D. W. Pohl, W. Denk, U. Dürig, “Optical stethoscopy: imaging with λ/20,” in Micron and Submicron Integrated Circuit Metrology, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.565, 56–61 (1986).

F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of the subwavelength detector interacting with a solid surface. The incident angle is labeled θ; k0 and R = (0, 0, D) represent the wave number of the incident field and the position of the detector, respectively. The vector Rp is needed to define the direction of the scattered field.

Fig. 2
Fig. 2

Light scattered intensity I(D) as a function of the approach distance D. The radius of the sphere is chosen equal to a = 5 nm. This curve is calculated by neglecting the retardation effects, and the frequency of the external field is chosen close to the resonance of the surface plasmon of the object, i.e., for Re[∊(ω) + 1] = 0.

Fig. 3
Fig. 3

Tridimensional representation of the plasmon resonance peak as a function of the approach distance and of the external frequency ω. This map was calculated without including retardation effects and the size of the detector is 60 nm in diameter. The frequency is scanned around the resonance frequency of the sphere.

Fig. 4
Fig. 4

Scattered intensity I(D) calculated in the near-field and far-field ranges by including retardation effects. The size of the detector is a = 15 nm in diameter, and ω = ω p / 3. The TE and TM polarizations are considered: (a) θ = α = π/2; (b) θ = α = 65°.

Fig. 5
Fig. 5

Same as Fig. 4 except that a = 25 nm: (a) θ = α = π/2; (b) θ = α = 65°; (c) θ = 10°, α = 0°.

Fig. 6
Fig. 6

Surface map of the intensity I(D, ω) calculated for TE polarization by taking account of the retardation effects; radius a = 25 nm.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

μ 0 ( ω ) = α s ( ω ) E 0 ( ω ) ,
α s ( ω ) = a 3 [ s ( ω ) - 1 s ( ω ) + 2 ] .
E ( R , ω ) = E 0 ( R , ω ) + S ( R , R , ω ) · α ( ω ) · E ( R , ω ) ,
E ( R , ω ) , = A - 1 ( R , ω ) · E 0 ( R , ω ) ,
A ( R , ω ) = [ 1 - S x x ( R , R , ω ) α ( ω ) S x y ( R , R , ω ) α ( ω ) S x z ( R , R , ω ) α ( ω ) S y x ( R , R , ω ) α ( ω ) 1 - S y y ( R , R , ω ) α ( ω ) S y z ( R , R , ω ) α ( ω ) S z x ( R , R , ω ) α ( ω ) S z y ( R , R , ω ) α ( ω ) 1 - S z z ( R , R , ω ) α ( ω ) ] .
E r ( r , ω ) = S ( r , r , ω ) · m ( ω ) .
( Δ + k 0 2 ) E ( r , ω ) = - 4 π { k 0 2 m ( ω ) + [ · m ( ω ) ] } × δ ( r - r a ) ,
E m ( r , ω ) = ( k 0 2 m ( ω ) + [ m ( ω ) · ] exp ( i k 0 r - r a ) r - r a - 1 ,
G 0 ( r - r a ) = exp ( i k 0 r - r a ) r - r a - 1
E m ( r , ω ) = i 2 π d k w 0 [ k 0 2 m ( ω ) + ( m ( ω ) · ) ] × exp [ i k 0 · ( l - l a ) + i w 0 z - z a ] ,
r = ( l , z ) ,             r a = ( l a , z a ) ,             w 0 2 = k 0 2 - k 2 .
E r ( r , ω ) = i 2 π d k F ( r , r a , ω ) { Δ p K × [ k m z ( ω ) + w 0 k y k m y ( ω ) + w 0 k x k m x ( ω ) ] - Δ s K [ k x k m y ( ω ) - k y k m x ( ω ) ] } ,
K = ( k x / k , k y / k , - k / w 0 ) ,
K = k 0 2 w 0 ( - k y / k , k x / k , 0 ) ,
F ( r , r a , ω ) = exp [ i k · ( l - l a ) + i w 0 ( z + z a ) ] .
Δ p = w - ( ω ) w 0 w + ( ω ) w 0 ;             Δ s = w - w 0 w + w 0 ,
w = [ ( ω ) k 0 2 - k 2 ] 1 / 2 .
S ¯ ( r , r , ω ) = i 2 π d k F ( r , r , ω ) N ( k , ω ) ,
N ( k , ω ) = [ Δ p w 0 k x 2 k 2 - Δ s k 0 2 k y 2 w 0 k 2 k x k y k 2 ( Δ p w 0 + Δ s k 0 2 w 0 ) Δ p k x k x k y k 2 ( Δ p w 0 + Δ s k 0 2 w 0 ) Δ p w 0 k y 2 k 2 - Δ s k 0 2 k x 2 w 0 Δ p k y - Δ p k x - Δ p k y - Δ p k 2 w 0 ] .
ϕ r ( r , ω ) = ϕ ¯ r ( r , ω ) + ϕ ˜ r ( r , ω ) ,
ϕ ¯ r ( r , ω ) = 1 2 π [ ( ω ) - 1 ( ω ) + 1 ] k - 1 d km ( ω ) Q × exp [ i k · ( l - l a ) ] exp [ - k ( z + z a ) ] ,
ϕ ˜ r ( r , ω ) = 1 4 π 3 [ ( ω ) - 1 ] [ ( ω ) + 1 ] 2 d k d k × m ( ω ) · Q k k [ ( ω ) k k + k · k ] ξ ( k - k ) × exp [ i k · ( l - l a ) - k ( z + z a ) ] ,
Q = ( i k , k ) ,             Q = ( i k , k ) ,
ξ ( q ) = d l exp ( - i q · l ) ξ ( l ) .
S ˜ ( r , r , ω ) = 1 4 π 3 [ ( ω ) - 1 ] [ ( ω ) + 1 ] 2 d k d k × exp ( i k · l - i k · l - k z - k z ) × [ ( ω ) k k + k · k k k ] × ξ ( k - k ) Q * Q ,
E d ( R p , ω ) = - ω 2 c 2 α ( ω ) exp ( - i ω R p / c ) T 1 ( R p ) · E ( R , ω ) ,
T 1 ( R p ) = R p R p - I R p 2 R p 3
T 1 ( R p ) = - 1 R p [ 1 0 0 0 cos 2 α - sin α cos α 0 - sin α cos α sin 2 α ] .
S ( R , R , ω ) = S ¯ ( R , R , ω ) + S ˜ ( R , R , ω ) ,
A ( R , ω ) = [ 1 - ( S ¯ x x + S ˜ x x ) α S ˜ x y α S ˜ x z α S ˜ y x α 1 × ( S ¯ y y × S ˜ y y ) α S ˜ y z α S ˜ z x α S ˜ z y α 1 - ( S ¯ z z + S ˜ z z ) α ] ,
I ( R , R p , ω ) = ω 4 c 4 α ( ω ) 2 × T 1 ( R p , α ) · A - 1 ( R , ω ) · E 0 ( R 0 , ω ) 2 .
I ( R , R p , ω ) ω 4 R p 2 c 4 | α ( ω ) 1 - α ( ω ) S ¯ x x ( R , R , ω ) | 2 .
E 0 ( ω ) = E 0 ( ω ) ( 0 , cos θ , sin θ ) .
I ( R , R p , ω ) = ω 4 R d 2 c 4 { | α ( ω ) cos 2 α cos θ [ 1 - α ( ω ) S ¯ y y ( R , R , ω ) ] - α ( ω ) sin α cos α sin θ [ 1 - α ( ω ) S ¯ z z ( R , R , ω ) ] | 2 + | α ( ω ) sin 2 α sin θ [ 1 - α ( ω ) S ¯ z z ( R , R , ω ) ] - α ( ω ) sin α cos α cos θ [ 1 - α ( ω ) S ¯ y y ( R , R , ω ) ] | } .
( ω ) = 0 - ω p 2 ω ( ω + i γ ) ,
γ = 1 / τ + v F / a ,

Metrics