Abstract

It is well known that the accuracy of surface temperature measurements by optical means is limited because of the uncertainties that are associated with the emissivity and the reflected fluxes. The application of the photothermal effect produced by a chopped laser beam for surface temperature measurements has proved to be a valuable tool to avoid the errors that are due to the reflected fluxes. In this paper we show that a pulsed laser may also be used for the same purpose. Since the measurement is quite rapid, this technique allows measurements to be made on moving surfaces. We present a careful analysis of the role of the experimental parameters and also give typical results.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Pyatt, “Some considerations of the errors of brightness and two-colour types of spectral radiation pyrometer,” Br. J. Appl. Phys. 5, 264–268 (1954).
    [CrossRef]
  2. Y. S. Touloukian, D. P. DeWitt, Thermophysical Properties of Matter (IFI Plenum, New York, 1970), Vols. 7–9.
  3. R. E. Bedford, Temperature, Its Measurement and Control in Science and Industry (Reinhold, New York, 1972), Vol. 4.
  4. J-J. Greffet, T. Loarer, “Pyrométrie optique,” in Métrologie des Propriétés Thermophysiques des Matériaux, J. Hladik, ed. (Masson, Paris, 1990).
  5. T. Land, R. Barber, “New pyrometers for glass and other surfaces,” J. Soc. Glass Tech. 38, 45–53 (1954).
  6. P. Cielo, S. Dallaire, G. Lamonde, S. Johar, “Measurement of thermal inertia by the reflectivity-cavity method,” Can. J. Phys. 64, 1217–1220 (1986).
    [CrossRef]
  7. N. Harada, K. Imai, T. Yamada, E. Makabe, “New radiation thermometries using multiple reflection and their applications to color coating line and continuous annealing line,” in Proceedings of the Fifth Process Technology Conference on Measurement and Control Instrumentation in the Iron and Steel Industry (Iron and Steel Society-American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1985).
  8. D. P. De Witt, H. Kunz, “Theory and technique for surface temperature determinations by measuring the radiance temperatures and the absorptance ratio for two wavelengths,” in Temperature: Its Measurement and Control in Science and Industry, H. M. Plumb, ed. (Instrument Society of America, Pittsburgh, Pa., 1972).
  9. W. G. Fastie, “An emissivity independent radiation pyrometer,” J. Opt. Soc. Am 41, 872 (A) (1951).
    [CrossRef]
  10. D. Kelsall, “An automatic emissivity-compensated radiation pyrometer,” J. Sci. Instrum. 40, 1–4 (1963).
    [CrossRef]
  11. T. P. Murray, “Polaradiometer: a new instrument for temperature measurement,” Rev. Sci. Instrum. 38, 791–798 (1967).
    [CrossRef]
  12. J. E. Roney, “Steel surface temperature measurement in industrial furnaces by compensation for reflected radiation errors,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (Instrument Society of America, Pittsburgh, Pa., 1982), Vol. 5, p. 485.
  13. P. B. Coates, “Multiwavelength pyrometry,” Metrologia 17, 103–109 (1981).
    [CrossRef]
  14. J. L. Gardner, “Computer modelling of multiwavelength pyrometer for measuring true temperature,” High Temp. High Pressures 12, 699–705 (1980).
  15. J. L. Gardner, T. P. Jones, “Multiwavelength radiation pyrometry where reflectance is measured to estimate emissivity,” J. Phys. E 13, 306–310 (1980).
    [CrossRef]
  16. J. L. Gardner, T. P. Jones, W. G. Sainty, “Induced-transmission interference filter array for multiwavelength pyrometry,” Appl. Opt. 21, 1259–1261 (1982).
    [CrossRef] [PubMed]
  17. R. Ramelot, J. M. Ludovicy, C. Stolz, J. P. Fishbach, “Capteurs industriels pour applications basses températures,” Rev. Gen. Therm. 27, 517–524 (1988).
  18. G. Heitz, “Tôle-voûte deux miroirs. Mesure de température dans les fours de recuit continu,” Rev. Gen. Therm. 27, 511–515 (1988).
  19. O. Berthet, “Effet photothermique appliqué à la pyrométrie optique,” Thèse de doctorat (Ecole Centrale de Paris, 92295 Châtenay-Malabry Cedex, France, 1987).
  20. O. Berthet, J.-J. Greffet, “Pyrometry using photothermal effect,” in Proceedings of the International Conference on Heat Transfer (Hemisphere, New York, 1986).
  21. O. Berthet, J.-J. Greffet, Y. Denayrolles, “Procédé de mesure de la température d’un corps par détection optique et échauffement modulé,” Brevet Français d’Invention8,611,542 (8August1986); O. Berthet, J.-J. Greffet, Y. Denayrolles, European patentEP0262996 (7August1987); O. Berthet, J.-J. Greffet, Y. Denayrolles, U.S. patent71,082,549 (7August1987).
  22. T. Loarer, J.-J. Greffet, M. Huetz-Aubert, “Noncontact surface temperature measurement by means of a modulated photothermal effect,” Appl. Opt. 29, 979–987 (1990).
    [CrossRef] [PubMed]
  23. T. Loarer, “Mesure de température de surface par effet photothermique modulé ou impulsionnel,” Thèse de doctorat (Ecole Centrale Paris, 92295 Châtenay-Malabry Cedex, France, 1989).
  24. A. Degiovanni, “Diffusivité et méthode flash,” Rev. Gen. Therm. 16, 420–442 (1977).
  25. A. C. Tam, B. Sullivan, “Remote sensing of pulsed photothermal radiometry,” Appl. Phys. Lett. 43, 333–335 (1983).
    [CrossRef]
  26. D. L. Balageas, J. C. Krapez, P. Cielo, “Pulsed photothermal modeling of layered media,” J. Appl. Phys. 59, 348–357 (1986).
    [CrossRef]
  27. W. P. Leung, A. C. Tam, “Thermal conduction at a contact interface measured by pulsed photothermal radiometry,” J. Appl. Phys. 63, 4505–4510 (1988).
    [CrossRef]
  28. W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
    [CrossRef]
  29. R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
    [CrossRef]
  30. J. L. Gardner, “Effective wavelength for multicolor pyrometry,” Appl. Opt. 19, 3088–3091 (1980)
    [CrossRef] [PubMed]
  31. J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10, 47–52 (1974).
    [CrossRef]
  32. P. B. Coates, “Wavelength specification in optical and photoelectric pyrometry,” 13, 1–5 (1977).
  33. J. W. Hahn, C. Rhee, “Reference wavelength method for two-color pyrometry,” Appl. Opt. 26, 5276–5279 (1987).
    [CrossRef] [PubMed]
  34. J. W. Hahn, C. Rhee, “Calculation of temperature error in a two-color pyrometer designed with the reference wavelength methods,” Appl. Opt. 27, 1916–1918 (1988)
    [CrossRef] [PubMed]
  35. H. S. Carslaw, J. C. Jaegger, Conduction of Heat in Solids (Oxford U. Press, New York, 1954).

1990 (1)

1988 (4)

J. W. Hahn, C. Rhee, “Calculation of temperature error in a two-color pyrometer designed with the reference wavelength methods,” Appl. Opt. 27, 1916–1918 (1988)
[CrossRef] [PubMed]

W. P. Leung, A. C. Tam, “Thermal conduction at a contact interface measured by pulsed photothermal radiometry,” J. Appl. Phys. 63, 4505–4510 (1988).
[CrossRef]

R. Ramelot, J. M. Ludovicy, C. Stolz, J. P. Fishbach, “Capteurs industriels pour applications basses températures,” Rev. Gen. Therm. 27, 517–524 (1988).

G. Heitz, “Tôle-voûte deux miroirs. Mesure de température dans les fours de recuit continu,” Rev. Gen. Therm. 27, 511–515 (1988).

1987 (1)

1986 (2)

D. L. Balageas, J. C. Krapez, P. Cielo, “Pulsed photothermal modeling of layered media,” J. Appl. Phys. 59, 348–357 (1986).
[CrossRef]

P. Cielo, S. Dallaire, G. Lamonde, S. Johar, “Measurement of thermal inertia by the reflectivity-cavity method,” Can. J. Phys. 64, 1217–1220 (1986).
[CrossRef]

1984 (2)

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

1983 (1)

A. C. Tam, B. Sullivan, “Remote sensing of pulsed photothermal radiometry,” Appl. Phys. Lett. 43, 333–335 (1983).
[CrossRef]

1982 (1)

1981 (1)

P. B. Coates, “Multiwavelength pyrometry,” Metrologia 17, 103–109 (1981).
[CrossRef]

1980 (3)

J. L. Gardner, “Computer modelling of multiwavelength pyrometer for measuring true temperature,” High Temp. High Pressures 12, 699–705 (1980).

J. L. Gardner, T. P. Jones, “Multiwavelength radiation pyrometry where reflectance is measured to estimate emissivity,” J. Phys. E 13, 306–310 (1980).
[CrossRef]

J. L. Gardner, “Effective wavelength for multicolor pyrometry,” Appl. Opt. 19, 3088–3091 (1980)
[CrossRef] [PubMed]

1977 (1)

A. Degiovanni, “Diffusivité et méthode flash,” Rev. Gen. Therm. 16, 420–442 (1977).

1974 (1)

J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10, 47–52 (1974).
[CrossRef]

1967 (1)

T. P. Murray, “Polaradiometer: a new instrument for temperature measurement,” Rev. Sci. Instrum. 38, 791–798 (1967).
[CrossRef]

1963 (1)

D. Kelsall, “An automatic emissivity-compensated radiation pyrometer,” J. Sci. Instrum. 40, 1–4 (1963).
[CrossRef]

1954 (2)

E. C. Pyatt, “Some considerations of the errors of brightness and two-colour types of spectral radiation pyrometer,” Br. J. Appl. Phys. 5, 264–268 (1954).
[CrossRef]

T. Land, R. Barber, “New pyrometers for glass and other surfaces,” J. Soc. Glass Tech. 38, 45–53 (1954).

1951 (1)

W. G. Fastie, “An emissivity independent radiation pyrometer,” J. Opt. Soc. Am 41, 872 (A) (1951).
[CrossRef]

Balageas, D. L.

D. L. Balageas, J. C. Krapez, P. Cielo, “Pulsed photothermal modeling of layered media,” J. Appl. Phys. 59, 348–357 (1986).
[CrossRef]

Barber, R.

T. Land, R. Barber, “New pyrometers for glass and other surfaces,” J. Soc. Glass Tech. 38, 45–53 (1954).

Bedford, R. E.

R. E. Bedford, Temperature, Its Measurement and Control in Science and Industry (Reinhold, New York, 1972), Vol. 4.

Berthet, O.

O. Berthet, J.-J. Greffet, “Pyrometry using photothermal effect,” in Proceedings of the International Conference on Heat Transfer (Hemisphere, New York, 1986).

O. Berthet, “Effet photothermique appliqué à la pyrométrie optique,” Thèse de doctorat (Ecole Centrale de Paris, 92295 Châtenay-Malabry Cedex, France, 1987).

O. Berthet, J.-J. Greffet, Y. Denayrolles, “Procédé de mesure de la température d’un corps par détection optique et échauffement modulé,” Brevet Français d’Invention8,611,542 (8August1986); O. Berthet, J.-J. Greffet, Y. Denayrolles, European patentEP0262996 (7August1987); O. Berthet, J.-J. Greffet, Y. Denayrolles, U.S. patent71,082,549 (7August1987).

Bezemer, J.

J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10, 47–52 (1974).
[CrossRef]

Birch, D. J. S.

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

Carslaw, H. S.

H. S. Carslaw, J. C. Jaegger, Conduction of Heat in Solids (Oxford U. Press, New York, 1954).

Cielo, P.

D. L. Balageas, J. C. Krapez, P. Cielo, “Pulsed photothermal modeling of layered media,” J. Appl. Phys. 59, 348–357 (1986).
[CrossRef]

P. Cielo, S. Dallaire, G. Lamonde, S. Johar, “Measurement of thermal inertia by the reflectivity-cavity method,” Can. J. Phys. 64, 1217–1220 (1986).
[CrossRef]

Coates, P. B.

P. B. Coates, “Multiwavelength pyrometry,” Metrologia 17, 103–109 (1981).
[CrossRef]

P. B. Coates, “Wavelength specification in optical and photoelectric pyrometry,” 13, 1–5 (1977).

Dallaire, S.

P. Cielo, S. Dallaire, G. Lamonde, S. Johar, “Measurement of thermal inertia by the reflectivity-cavity method,” Can. J. Phys. 64, 1217–1220 (1986).
[CrossRef]

De Witt, D. P.

D. P. De Witt, H. Kunz, “Theory and technique for surface temperature determinations by measuring the radiance temperatures and the absorptance ratio for two wavelengths,” in Temperature: Its Measurement and Control in Science and Industry, H. M. Plumb, ed. (Instrument Society of America, Pittsburgh, Pa., 1972).

Degiovanni, A.

A. Degiovanni, “Diffusivité et méthode flash,” Rev. Gen. Therm. 16, 420–442 (1977).

Denayrolles, Y.

O. Berthet, J.-J. Greffet, Y. Denayrolles, “Procédé de mesure de la température d’un corps par détection optique et échauffement modulé,” Brevet Français d’Invention8,611,542 (8August1986); O. Berthet, J.-J. Greffet, Y. Denayrolles, European patentEP0262996 (7August1987); O. Berthet, J.-J. Greffet, Y. Denayrolles, U.S. patent71,082,549 (7August1987).

DeWitt, D. P.

Y. S. Touloukian, D. P. DeWitt, Thermophysical Properties of Matter (IFI Plenum, New York, 1970), Vols. 7–9.

Fastie, W. G.

W. G. Fastie, “An emissivity independent radiation pyrometer,” J. Opt. Soc. Am 41, 872 (A) (1951).
[CrossRef]

Fishbach, J. P.

R. Ramelot, J. M. Ludovicy, C. Stolz, J. P. Fishbach, “Capteurs industriels pour applications basses températures,” Rev. Gen. Therm. 27, 517–524 (1988).

Gardner, J. L.

J. L. Gardner, T. P. Jones, W. G. Sainty, “Induced-transmission interference filter array for multiwavelength pyrometry,” Appl. Opt. 21, 1259–1261 (1982).
[CrossRef] [PubMed]

J. L. Gardner, “Effective wavelength for multicolor pyrometry,” Appl. Opt. 19, 3088–3091 (1980)
[CrossRef] [PubMed]

J. L. Gardner, “Computer modelling of multiwavelength pyrometer for measuring true temperature,” High Temp. High Pressures 12, 699–705 (1980).

J. L. Gardner, T. P. Jones, “Multiwavelength radiation pyrometry where reflectance is measured to estimate emissivity,” J. Phys. E 13, 306–310 (1980).
[CrossRef]

Gilchrist, J. R.

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

Greffet, J.-J.

T. Loarer, J.-J. Greffet, M. Huetz-Aubert, “Noncontact surface temperature measurement by means of a modulated photothermal effect,” Appl. Opt. 29, 979–987 (1990).
[CrossRef] [PubMed]

O. Berthet, J.-J. Greffet, “Pyrometry using photothermal effect,” in Proceedings of the International Conference on Heat Transfer (Hemisphere, New York, 1986).

O. Berthet, J.-J. Greffet, Y. Denayrolles, “Procédé de mesure de la température d’un corps par détection optique et échauffement modulé,” Brevet Français d’Invention8,611,542 (8August1986); O. Berthet, J.-J. Greffet, Y. Denayrolles, European patentEP0262996 (7August1987); O. Berthet, J.-J. Greffet, Y. Denayrolles, U.S. patent71,082,549 (7August1987).

Greffet, J-J.

J-J. Greffet, T. Loarer, “Pyrométrie optique,” in Métrologie des Propriétés Thermophysiques des Matériaux, J. Hladik, ed. (Masson, Paris, 1990).

Hahn, J. W.

Harada, N.

N. Harada, K. Imai, T. Yamada, E. Makabe, “New radiation thermometries using multiple reflection and their applications to color coating line and continuous annealing line,” in Proceedings of the Fifth Process Technology Conference on Measurement and Control Instrumentation in the Iron and Steel Industry (Iron and Steel Society-American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1985).

Heitz, G.

G. Heitz, “Tôle-voûte deux miroirs. Mesure de température dans les fours de recuit continu,” Rev. Gen. Therm. 27, 511–515 (1988).

Huetz-Aubert, M.

Imai, K.

N. Harada, K. Imai, T. Yamada, E. Makabe, “New radiation thermometries using multiple reflection and their applications to color coating line and continuous annealing line,” in Proceedings of the Fifth Process Technology Conference on Measurement and Control Instrumentation in the Iron and Steel Industry (Iron and Steel Society-American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1985).

Imhof, R. E.

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

Jaegger, J. C.

H. S. Carslaw, J. C. Jaegger, Conduction of Heat in Solids (Oxford U. Press, New York, 1954).

Johar, S.

P. Cielo, S. Dallaire, G. Lamonde, S. Johar, “Measurement of thermal inertia by the reflectivity-cavity method,” Can. J. Phys. 64, 1217–1220 (1986).
[CrossRef]

Jones, T. P.

J. L. Gardner, T. P. Jones, W. G. Sainty, “Induced-transmission interference filter array for multiwavelength pyrometry,” Appl. Opt. 21, 1259–1261 (1982).
[CrossRef] [PubMed]

J. L. Gardner, T. P. Jones, “Multiwavelength radiation pyrometry where reflectance is measured to estimate emissivity,” J. Phys. E 13, 306–310 (1980).
[CrossRef]

Kelsall, D.

D. Kelsall, “An automatic emissivity-compensated radiation pyrometer,” J. Sci. Instrum. 40, 1–4 (1963).
[CrossRef]

Krapez, J. C.

D. L. Balageas, J. C. Krapez, P. Cielo, “Pulsed photothermal modeling of layered media,” J. Appl. Phys. 59, 348–357 (1986).
[CrossRef]

Kunz, H.

D. P. De Witt, H. Kunz, “Theory and technique for surface temperature determinations by measuring the radiance temperatures and the absorptance ratio for two wavelengths,” in Temperature: Its Measurement and Control in Science and Industry, H. M. Plumb, ed. (Instrument Society of America, Pittsburgh, Pa., 1972).

Lamonde, G.

P. Cielo, S. Dallaire, G. Lamonde, S. Johar, “Measurement of thermal inertia by the reflectivity-cavity method,” Can. J. Phys. 64, 1217–1220 (1986).
[CrossRef]

Land, T.

T. Land, R. Barber, “New pyrometers for glass and other surfaces,” J. Soc. Glass Tech. 38, 45–53 (1954).

Leung, W. P.

W. P. Leung, A. C. Tam, “Thermal conduction at a contact interface measured by pulsed photothermal radiometry,” J. Appl. Phys. 63, 4505–4510 (1988).
[CrossRef]

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

Loarer, T.

T. Loarer, J.-J. Greffet, M. Huetz-Aubert, “Noncontact surface temperature measurement by means of a modulated photothermal effect,” Appl. Opt. 29, 979–987 (1990).
[CrossRef] [PubMed]

J-J. Greffet, T. Loarer, “Pyrométrie optique,” in Métrologie des Propriétés Thermophysiques des Matériaux, J. Hladik, ed. (Masson, Paris, 1990).

T. Loarer, “Mesure de température de surface par effet photothermique modulé ou impulsionnel,” Thèse de doctorat (Ecole Centrale Paris, 92295 Châtenay-Malabry Cedex, France, 1989).

Ludovicy, J. M.

R. Ramelot, J. M. Ludovicy, C. Stolz, J. P. Fishbach, “Capteurs industriels pour applications basses températures,” Rev. Gen. Therm. 27, 517–524 (1988).

Makabe, E.

N. Harada, K. Imai, T. Yamada, E. Makabe, “New radiation thermometries using multiple reflection and their applications to color coating line and continuous annealing line,” in Proceedings of the Fifth Process Technology Conference on Measurement and Control Instrumentation in the Iron and Steel Industry (Iron and Steel Society-American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1985).

Murray, T. P.

T. P. Murray, “Polaradiometer: a new instrument for temperature measurement,” Rev. Sci. Instrum. 38, 791–798 (1967).
[CrossRef]

Pyatt, E. C.

E. C. Pyatt, “Some considerations of the errors of brightness and two-colour types of spectral radiation pyrometer,” Br. J. Appl. Phys. 5, 264–268 (1954).
[CrossRef]

Ramelot, R.

R. Ramelot, J. M. Ludovicy, C. Stolz, J. P. Fishbach, “Capteurs industriels pour applications basses températures,” Rev. Gen. Therm. 27, 517–524 (1988).

Rhee, C.

Roney, J. E.

J. E. Roney, “Steel surface temperature measurement in industrial furnaces by compensation for reflected radiation errors,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (Instrument Society of America, Pittsburgh, Pa., 1982), Vol. 5, p. 485.

Sainty, W. G.

Stolz, C.

R. Ramelot, J. M. Ludovicy, C. Stolz, J. P. Fishbach, “Capteurs industriels pour applications basses températures,” Rev. Gen. Therm. 27, 517–524 (1988).

Strivens, T. A.

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

Sullivan, B.

A. C. Tam, B. Sullivan, “Remote sensing of pulsed photothermal radiometry,” Appl. Phys. Lett. 43, 333–335 (1983).
[CrossRef]

Tam, A. C.

W. P. Leung, A. C. Tam, “Thermal conduction at a contact interface measured by pulsed photothermal radiometry,” J. Appl. Phys. 63, 4505–4510 (1988).
[CrossRef]

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

A. C. Tam, B. Sullivan, “Remote sensing of pulsed photothermal radiometry,” Appl. Phys. Lett. 43, 333–335 (1983).
[CrossRef]

Thornley, F. R.

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

Touloukian, Y. S.

Y. S. Touloukian, D. P. DeWitt, Thermophysical Properties of Matter (IFI Plenum, New York, 1970), Vols. 7–9.

Yamada, T.

N. Harada, K. Imai, T. Yamada, E. Makabe, “New radiation thermometries using multiple reflection and their applications to color coating line and continuous annealing line,” in Proceedings of the Fifth Process Technology Conference on Measurement and Control Instrumentation in the Iron and Steel Industry (Iron and Steel Society-American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1985).

Appl. Opt. (5)

Appl. Phys. Lett. (1)

A. C. Tam, B. Sullivan, “Remote sensing of pulsed photothermal radiometry,” Appl. Phys. Lett. 43, 333–335 (1983).
[CrossRef]

Br. J. Appl. Phys. (1)

E. C. Pyatt, “Some considerations of the errors of brightness and two-colour types of spectral radiation pyrometer,” Br. J. Appl. Phys. 5, 264–268 (1954).
[CrossRef]

Can. J. Phys. (1)

P. Cielo, S. Dallaire, G. Lamonde, S. Johar, “Measurement of thermal inertia by the reflectivity-cavity method,” Can. J. Phys. 64, 1217–1220 (1986).
[CrossRef]

High Temp. High Pressures (1)

J. L. Gardner, “Computer modelling of multiwavelength pyrometer for measuring true temperature,” High Temp. High Pressures 12, 699–705 (1980).

J. Appl. Phys. (3)

D. L. Balageas, J. C. Krapez, P. Cielo, “Pulsed photothermal modeling of layered media,” J. Appl. Phys. 59, 348–357 (1986).
[CrossRef]

W. P. Leung, A. C. Tam, “Thermal conduction at a contact interface measured by pulsed photothermal radiometry,” J. Appl. Phys. 63, 4505–4510 (1988).
[CrossRef]

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

J. Opt. Soc. Am (1)

W. G. Fastie, “An emissivity independent radiation pyrometer,” J. Opt. Soc. Am 41, 872 (A) (1951).
[CrossRef]

J. Phys. E (2)

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

J. L. Gardner, T. P. Jones, “Multiwavelength radiation pyrometry where reflectance is measured to estimate emissivity,” J. Phys. E 13, 306–310 (1980).
[CrossRef]

J. Sci. Instrum. (1)

D. Kelsall, “An automatic emissivity-compensated radiation pyrometer,” J. Sci. Instrum. 40, 1–4 (1963).
[CrossRef]

J. Soc. Glass Tech. (1)

T. Land, R. Barber, “New pyrometers for glass and other surfaces,” J. Soc. Glass Tech. 38, 45–53 (1954).

Metrologia (2)

P. B. Coates, “Multiwavelength pyrometry,” Metrologia 17, 103–109 (1981).
[CrossRef]

J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10, 47–52 (1974).
[CrossRef]

Rev. Gen. Therm. (1)

R. Ramelot, J. M. Ludovicy, C. Stolz, J. P. Fishbach, “Capteurs industriels pour applications basses températures,” Rev. Gen. Therm. 27, 517–524 (1988).

Rev. Gen. Therm. (2)

G. Heitz, “Tôle-voûte deux miroirs. Mesure de température dans les fours de recuit continu,” Rev. Gen. Therm. 27, 511–515 (1988).

A. Degiovanni, “Diffusivité et méthode flash,” Rev. Gen. Therm. 16, 420–442 (1977).

Rev. Sci. Instrum. (1)

T. P. Murray, “Polaradiometer: a new instrument for temperature measurement,” Rev. Sci. Instrum. 38, 791–798 (1967).
[CrossRef]

Other (12)

J. E. Roney, “Steel surface temperature measurement in industrial furnaces by compensation for reflected radiation errors,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (Instrument Society of America, Pittsburgh, Pa., 1982), Vol. 5, p. 485.

Y. S. Touloukian, D. P. DeWitt, Thermophysical Properties of Matter (IFI Plenum, New York, 1970), Vols. 7–9.

R. E. Bedford, Temperature, Its Measurement and Control in Science and Industry (Reinhold, New York, 1972), Vol. 4.

J-J. Greffet, T. Loarer, “Pyrométrie optique,” in Métrologie des Propriétés Thermophysiques des Matériaux, J. Hladik, ed. (Masson, Paris, 1990).

O. Berthet, “Effet photothermique appliqué à la pyrométrie optique,” Thèse de doctorat (Ecole Centrale de Paris, 92295 Châtenay-Malabry Cedex, France, 1987).

O. Berthet, J.-J. Greffet, “Pyrometry using photothermal effect,” in Proceedings of the International Conference on Heat Transfer (Hemisphere, New York, 1986).

O. Berthet, J.-J. Greffet, Y. Denayrolles, “Procédé de mesure de la température d’un corps par détection optique et échauffement modulé,” Brevet Français d’Invention8,611,542 (8August1986); O. Berthet, J.-J. Greffet, Y. Denayrolles, European patentEP0262996 (7August1987); O. Berthet, J.-J. Greffet, Y. Denayrolles, U.S. patent71,082,549 (7August1987).

P. B. Coates, “Wavelength specification in optical and photoelectric pyrometry,” 13, 1–5 (1977).

H. S. Carslaw, J. C. Jaegger, Conduction of Heat in Solids (Oxford U. Press, New York, 1954).

T. Loarer, “Mesure de température de surface par effet photothermique modulé ou impulsionnel,” Thèse de doctorat (Ecole Centrale Paris, 92295 Châtenay-Malabry Cedex, France, 1989).

N. Harada, K. Imai, T. Yamada, E. Makabe, “New radiation thermometries using multiple reflection and their applications to color coating line and continuous annealing line,” in Proceedings of the Fifth Process Technology Conference on Measurement and Control Instrumentation in the Iron and Steel Industry (Iron and Steel Society-American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1985).

D. P. De Witt, H. Kunz, “Theory and technique for surface temperature determinations by measuring the radiance temperatures and the absorptance ratio for two wavelengths,” in Temperature: Its Measurement and Control in Science and Industry, H. M. Plumb, ed. (Instrument Society of America, Pittsburgh, Pa., 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photothermal signal versus time for a 304L steel sample: pulse energy, 5 mJ, surface temperature T = 380 K; detection bandwidth, 3–5.5 μm.

Fig. 2
Fig. 2

Photothermal signal versus laser power for a 304L steel sample: spot diameter, 4 mm; surface temperature T = 700 K; detection bandwidth, 160 nm around 3.99 μm; spot diameter, 4 mm.

Fig. 3
Fig. 3

Experimental setup: 1, YAG laser; 2, Si detector; 3, sample and furnace; 4, interference filter; 5, infrared detector InSb; 6, boxcar; 7, scope; 8, microcomputer; L1, glass lens; L2, CaF2 lens; F1, low bandpass interference filter.

Fig. 4
Fig. 4

Definition of the heating time tp, delay t1tp, and sampling window Δt = t2t1.

Fig. 5
Fig. 5

Relative error of the photothermal signal versus the sampling window and the sample temperature: time delay, 100 μs; N = 300; 304L steel sample with an emissivity of 0.8 at 3.99 μm; detection bandwidth, 160 nm; spot diameter, 4 nm; pulse energy, 5 mJ.

Fig. 6
Fig. 6

Relative error of the photothermal signal versus the delay: sampling window, 1 μs; N = 100; 304L steel sample with an emissivity of 0.8 at 3.99 μm; detection bandwidth, 160 nm; spot diameter, 4 mm; pulse energy, 5 mJ; surface temperature, 610 K.

Fig. 7
Fig. 7

Photothermal signal versus reference temperature for a 304L steel sample for the following parameters: time delay, 100 μs; sampling window, 150 μs; N = 300; emissivity of 0.8 at 3.9 μm; detection bandwidth, 3–5.5 μm; spot diameter, 4 mm; pulse energy, 10 mJ.

Tables (2)

Tables Icon

Table 1 Experimental Temperature Measurements for an Oxidized Iron Samplea

Tables Icon

Table 2 Experimental Temperature Measurements for an Oxidized Iron Samplea

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

S λ = k λ τ λ [ λ I λ 0 ( T ) + I λ r ] ,
I λ 0 [ T ( r , t ) ] = I λ 0 ( T 0 ) + I λ 0 T ( T 0 ) Δ T ( r , t ) .
S λ = k λ τ λ λ I λ 0 T ( T 0 ) Δ S Δ T ( r , t ) d S .
T 0 = C 2 ( 1 λ 2 - 1 λ 1 ) ln ( S λ 1 S λ 2 λ 2 λ 1 k λ 2 τ λ 2 k λ 1 τ λ 1 ( λ 1 λ 2 ) 6 ) ,
τ λ p I λ p 0 ( T 0 ) T Δ λ 0 τ λ I λ 0 ( T 0 ) T d λ .
f ( T 0 ) = 0 τ λ 1 I λ 0 ( T 0 ) T d λ 0 τ λ 2 I λ 0 ( T 0 ) T d λ .
f ( T 0 ) = A + B / T 0 + C / T 0 2 .
Δ Ω Δ λ Δ S τ λ λ I λ 0 T ( T 0 ) Δ T max 2 .
I ( r ) = ( P 0 / π w 2 ) exp ( - r 2 / w 2 ) .
T t - D Δ T = Q ( x , y , z , t ) ρ c p ,
Q ( x , y , z , t ) = P 0 ( 1 - ρ λ 0 ) π w 2 κ λ 0 × exp ( - κ λ 0 x ) exp ( - r 2 w 2 ) f ( t ) ,
T ( x , y , z , 0 ) = T 0 , T ( 0 , y , z , t ) / x = 0 , T ( , y , z , t ) = T 0 .
G ( x , y , z , t / x , y , z , t ) = 1 8 [ π D ( t - t ) ] 3 / 2 × { exp [ - ( x - x ) 2 + ( y - y ) 2 + ( z - z ) 2 4 D ( t - t ) ] + exp [ - ( x + x ) 2 + ( y - y ) 2 + ( z - z ) 2 4 D ( t - t ) ] } .
Δ T ( x , y , z , t ) = d x d y d z d t × Q ( x , y , z , t ) ρ c p G ( x , y , z , t / x , y , z t ) .
V ρ c p Δ T ( t ) = S I 0 t ,
Δ T ( t ) = I 0 t k ρ c p .
Δ T ( t ) = I 0 k ρ c p ( t - t - t p ) .
Δ T ( t ) = I 0 t p k ρ c p 1 t .
Δ T ( t ) = I 0 t p ρ c p κ λ 0 .
Δ T ( t ) = P 0 π ρ c p ( D t ) 3 / 2 ,
S λ ( t ) = Δ Ω Δ λ R λ τ λ I λ e [ T 0 + Δ T ( x , y , z , t ) ] d S d λ ,
S λ ( t ) = Δ Ω Δ λ d λ R λ τ λ λ κ λ I λ 0 T ( T 0 ) × Δ S d S 0 d x Δ T ( x , y , z , t ) exp ( - κ λ x ) .

Metrics