Abstract

Methods for the novel calculation of aberrations in objective lenses that require diffraction-limited optical performance are proposed and discussed. Coma, astigmatism, and spherical aberrations are evaluated separately and quantitatively from the intensity distribution of spot images. The aberration values calculated from the spot images were found to correlate well with the experimental results from the wave-front aberrations measured by a laser interferometer. The measurements took only 12 s as a mean value. This is 10 times faster than the conventional method.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Haisma, E. Hugues, C. Babolat, “Realization of a bi-aspherical objective lens for Philips Video Long Play system,” Opt. Lett. 4, 70–72 (1979).
    [CrossRef] [PubMed]
  2. R. O. Maschmeyer, C. A. Andrysick, T. W. Geyer, H. E. Meissner, C. J. Parker, L. M. Sanford, “Precision molded-glass optics,” Appl. Opt. 22, 2410–2412 (1983).
    [CrossRef] [PubMed]
  3. R. O. Maschmeyer, R. M. Hujar, L. L. Carpenter, B. W. Nicholson, E. F. Vozenilek, “Optical performance of a diffraction-limited molded-glass biaspheric lens,” Appl. Opt. 22, 2413–2415 (1983).
    [CrossRef] [PubMed]
  4. P. L. Ruben, “Design and use of mass-produced aspheres at Kodak,” Appl. Opt. 24, 1682–1688 (1985).
    [CrossRef] [PubMed]
  5. D. Visser, T. G. Gijsbers, R. A. M. Jorna, “Molded and measurements for replicated aspheric lenses for optical recording,” Appl. Opt. 24, 1848–1852 (1985).
    [CrossRef] [PubMed]
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), pp. 464–466.
  7. P. Kuttner, “Design and testing of lenses for optical disk technology,” Opt. Eng. 22, 473–478 (1983).
  8. D. K. Cohen, B. Little, F. S. Luecke, “Techniques for measuring 1 μm diam Gaussian beams,” Appl. Opt. 23, 637–640 (1984).
    [CrossRef] [PubMed]
  9. M. T. Gale, H. Meier, “Rapid evaluation of submicron laser spots,” RCA Rev. 46, 56–69 (1985).
  10. Y. Tanaka, Y. Nagaoka, M. Ueda, “Lens and optics for optical disk system,” Jpn. J. Appl. Phys. Suppl. 26, 121–126 (1987).
  11. M. Sunohara, Y. Tanaka, Y. Nagaoka, M. Ueda, K. Azuma, “Single lens CD player pickup system using a bi-aspheric molded glass lens,” IEEE Trans. Commun. Electron. CE-33, 520–530 (1987).
    [CrossRef]

1987 (2)

Y. Tanaka, Y. Nagaoka, M. Ueda, “Lens and optics for optical disk system,” Jpn. J. Appl. Phys. Suppl. 26, 121–126 (1987).

M. Sunohara, Y. Tanaka, Y. Nagaoka, M. Ueda, K. Azuma, “Single lens CD player pickup system using a bi-aspheric molded glass lens,” IEEE Trans. Commun. Electron. CE-33, 520–530 (1987).
[CrossRef]

1985 (3)

1984 (1)

1983 (3)

1979 (1)

Andrysick, C. A.

Azuma, K.

M. Sunohara, Y. Tanaka, Y. Nagaoka, M. Ueda, K. Azuma, “Single lens CD player pickup system using a bi-aspheric molded glass lens,” IEEE Trans. Commun. Electron. CE-33, 520–530 (1987).
[CrossRef]

Babolat, C.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), pp. 464–466.

Carpenter, L. L.

Cohen, D. K.

Gale, M. T.

M. T. Gale, H. Meier, “Rapid evaluation of submicron laser spots,” RCA Rev. 46, 56–69 (1985).

Geyer, T. W.

Gijsbers, T. G.

Haisma, J.

Hugues, E.

Hujar, R. M.

Jorna, R. A. M.

Kuttner, P.

P. Kuttner, “Design and testing of lenses for optical disk technology,” Opt. Eng. 22, 473–478 (1983).

Little, B.

Luecke, F. S.

Maschmeyer, R. O.

Meier, H.

M. T. Gale, H. Meier, “Rapid evaluation of submicron laser spots,” RCA Rev. 46, 56–69 (1985).

Meissner, H. E.

Nagaoka, Y.

Y. Tanaka, Y. Nagaoka, M. Ueda, “Lens and optics for optical disk system,” Jpn. J. Appl. Phys. Suppl. 26, 121–126 (1987).

M. Sunohara, Y. Tanaka, Y. Nagaoka, M. Ueda, K. Azuma, “Single lens CD player pickup system using a bi-aspheric molded glass lens,” IEEE Trans. Commun. Electron. CE-33, 520–530 (1987).
[CrossRef]

Nicholson, B. W.

Parker, C. J.

Ruben, P. L.

Sanford, L. M.

Sunohara, M.

M. Sunohara, Y. Tanaka, Y. Nagaoka, M. Ueda, K. Azuma, “Single lens CD player pickup system using a bi-aspheric molded glass lens,” IEEE Trans. Commun. Electron. CE-33, 520–530 (1987).
[CrossRef]

Tanaka, Y.

M. Sunohara, Y. Tanaka, Y. Nagaoka, M. Ueda, K. Azuma, “Single lens CD player pickup system using a bi-aspheric molded glass lens,” IEEE Trans. Commun. Electron. CE-33, 520–530 (1987).
[CrossRef]

Y. Tanaka, Y. Nagaoka, M. Ueda, “Lens and optics for optical disk system,” Jpn. J. Appl. Phys. Suppl. 26, 121–126 (1987).

Ueda, M.

Y. Tanaka, Y. Nagaoka, M. Ueda, “Lens and optics for optical disk system,” Jpn. J. Appl. Phys. Suppl. 26, 121–126 (1987).

M. Sunohara, Y. Tanaka, Y. Nagaoka, M. Ueda, K. Azuma, “Single lens CD player pickup system using a bi-aspheric molded glass lens,” IEEE Trans. Commun. Electron. CE-33, 520–530 (1987).
[CrossRef]

Visser, D.

Vozenilek, E. F.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), pp. 464–466.

Appl. Opt. (5)

IEEE Trans. Commun. Electron. (1)

M. Sunohara, Y. Tanaka, Y. Nagaoka, M. Ueda, K. Azuma, “Single lens CD player pickup system using a bi-aspheric molded glass lens,” IEEE Trans. Commun. Electron. CE-33, 520–530 (1987).
[CrossRef]

Jpn. J. Appl. Phys. Suppl. (1)

Y. Tanaka, Y. Nagaoka, M. Ueda, “Lens and optics for optical disk system,” Jpn. J. Appl. Phys. Suppl. 26, 121–126 (1987).

Opt. Eng. (1)

P. Kuttner, “Design and testing of lenses for optical disk technology,” Opt. Eng. 22, 473–478 (1983).

Opt. Lett. (1)

RCA Rev. (1)

M. T. Gale, H. Meier, “Rapid evaluation of submicron laser spots,” RCA Rev. 46, 56–69 (1985).

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), pp. 464–466.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Influence of lens thickness and lens decentering on the rms wave-front aberration.

Fig. 2
Fig. 2

Polar coordinates for a spot image.

Fig. 3
Fig. 3

Intensity distribution between the first dark ring and the second dark ring and their coma vectors.

Fig. 4
Fig. 4

Simulated results of astigmatism: (a) spot profile of astigmatism defocused by 2.5 μm, (b) the first-order moment and astigmatism vector.

Fig. 5
Fig. 5

Defocused spot profiles and their astigmatism vectors in the cases of (a) astigmatism of 0.04λ and (b) the elliptical incident light distribution.

Fig. 6
Fig. 6

Intensity distribution of spherical aberrations between R1 and R2.

Fig. 7
Fig. 7

Correlations between the wave-front aberrations of astigmatism and the calculated magnitude of the astigmatism vector.

Fig. 8
Fig. 8

Correlations between the wave-front aberrations of the spherical aberration and the calculated spherical aberration S.

Fig. 9
Fig. 9

Optical system of the measuring equipment: C1, C2, CCD cameras; M1, M2, mirrors; L1, L2, L3, L4, lenses; F1, F2, filters; HM1, HM2, half-mirrors; Lt, tested lens; LD, laser diode; PD, photodetector; CP, disk plate; OP, optical pickup.

Fig. 10
Fig. 10

Correlation between the tilt angle of the glass plate and the magnitude of the coma vector calculated from the measured spot image.

Fig. 11
Fig. 11

Correlation between the wave-front aberration of the astigmatism measured by an interferometer and the magnitude of the astigmatism vector calculated from the measured spot image.

Fig. 12
Fig. 12

Effect of lens rotation on the magnitude of the astigmatism vector (a) before and (b) after compensation.

Fig. 13
Fig. 13

Correlation between the spherical aberration measured by the interferometer and the spherical value of the spherical aberration calculated from the measured spot image.

Tables (1)

Tables Icon

Table I Factors Causing Aberrations in the Molded-Glass Process

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R 1 = 0.61 λ / NA ,
R 2 = 1.12 λ / NA .
C = θ ( r = R 1 R 2 I ( r , θ ) i θ ) ,
M n ( θ ) = r = θ r n I ( r , θ ) .
M = θ i 2 θ M 1 ( θ ) ,
( P x , P y ) = ( R x , R y ) + ( B x , B y ) ,
( M x , M y ) = ( - R y , R x ) + ( B x , B y ) .
A = ( R x , R y ) = [ P x - M x - ( P y - M y ) 2 , P x - M x + ( P y - M y ) 2 ] .
S = log ( S p / S m ) ,

Metrics