Abstract

Optical transmittance characteristics of nine optical filters were remeasured after nearly 6 years in space aboard the NASA Long-Duration Exposure Facility. Three different filter types were included. In general, transmittance decreased for most filters. The center frequency and bandpass of a narrow-band filter under an aluminum cover were unchanged, while narrow-band filters exposed directly to the space environment tended to show a shift in center frequency and increased bandwidth. A pair of infrared-reflecting mirrors exhibited reduced transmittance in the visible, with a mirror under an aluminum cover less degraded than a mirror exposed to space. The bandpass was unchanged for both of these mirrors. Neutral density filters showed a slight increase in transmittance for an uncovered filter; essentially no change for the filter under the aluminum cover.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Kindly supplied by Corion Corp., Holliston, Mass.
  2. F. Goldstein, “Optical filters,” in Methods of Experimental Physics, D. Malacara, ed. (Academic, New York, 1988), Vol. 25, pp. 273–301.
    [CrossRef]
  3. E. V. Benton, W. Heinrich, T. A. Parnell, T. W. Armstrong, J. H. Derrickson, G. T. Fishman, A. L. Frank, J. W. Watts, B. Wiegel, Ionizing Radiation Exposure Of LDEF (Prerecovery Estimates, Vol. 20 of Nuclear Tracks And Radiation Measurements (1992), pp. 75–100.
  4. R. J. Bourassa, J. J. Gillis, “Atomic oxygen exposure of LDEF experiment trays,” Contractor Rep. 189627 (NASA Langely Research Center, Hampton, Va., 1991).
  5. C. A. Nicoletta, A. G. Eubanks, “Effect of simulated radiation on selected optical materials,” Appl. Opt. 6, 1365–1370 (1972).
    [CrossRef]
  6. M. T. Shetter, V. J. Abreu, “Radiation effects on the transmission of various optical glasses and epoxies,” Appl. Opt. 18, 1132–1133 (1979).
    [CrossRef] [PubMed]
  7. S. F. Pellicory, E. E. Russell, L. A. Watts, “Radiation induced transmission loss in optical materials,” Appl. Opt. 18, 2618–2621 (1979).
    [CrossRef]
  8. P. N. Grillot, W. J. Rosenberg, “Proton radiation damage in optical filter glass,” Appl. Opt. 28, 4473–4477 (1989).
    [CrossRef] [PubMed]
  9. Optical Design, U.S. Government Publ. MIL-HDBK-141, Military Standardization Series (U.S. Government Printing Office, Washington, D.C., 5October1962), Paragraph 20.4.8.2.2.
  10. Session on Space Environmental Effects—Materials, Part 2, in LDEF-69 Months in Space, A. S. Levine, ed., NASA Conference Publication 3134 (National Aeronautics and Space Administration), Washington, D.C., 1991).
  11. E. G. Linden, “Aerospace electronic materials: applications/environments/effects,” Electro-Technology (December1961), pp. 125–131, and references therein.
  12. G. A. Harvey, NASA Langley Research Center, Hampton, Va. 23665-5225 (personal communications, 1991).

1989

1979

1972

C. A. Nicoletta, A. G. Eubanks, “Effect of simulated radiation on selected optical materials,” Appl. Opt. 6, 1365–1370 (1972).
[CrossRef]

1961

E. G. Linden, “Aerospace electronic materials: applications/environments/effects,” Electro-Technology (December1961), pp. 125–131, and references therein.

Abreu, V. J.

Armstrong, T. W.

E. V. Benton, W. Heinrich, T. A. Parnell, T. W. Armstrong, J. H. Derrickson, G. T. Fishman, A. L. Frank, J. W. Watts, B. Wiegel, Ionizing Radiation Exposure Of LDEF (Prerecovery Estimates, Vol. 20 of Nuclear Tracks And Radiation Measurements (1992), pp. 75–100.

Benton, E. V.

E. V. Benton, W. Heinrich, T. A. Parnell, T. W. Armstrong, J. H. Derrickson, G. T. Fishman, A. L. Frank, J. W. Watts, B. Wiegel, Ionizing Radiation Exposure Of LDEF (Prerecovery Estimates, Vol. 20 of Nuclear Tracks And Radiation Measurements (1992), pp. 75–100.

Bourassa, R. J.

R. J. Bourassa, J. J. Gillis, “Atomic oxygen exposure of LDEF experiment trays,” Contractor Rep. 189627 (NASA Langely Research Center, Hampton, Va., 1991).

Derrickson, J. H.

E. V. Benton, W. Heinrich, T. A. Parnell, T. W. Armstrong, J. H. Derrickson, G. T. Fishman, A. L. Frank, J. W. Watts, B. Wiegel, Ionizing Radiation Exposure Of LDEF (Prerecovery Estimates, Vol. 20 of Nuclear Tracks And Radiation Measurements (1992), pp. 75–100.

Eubanks, A. G.

C. A. Nicoletta, A. G. Eubanks, “Effect of simulated radiation on selected optical materials,” Appl. Opt. 6, 1365–1370 (1972).
[CrossRef]

Fishman, G. T.

E. V. Benton, W. Heinrich, T. A. Parnell, T. W. Armstrong, J. H. Derrickson, G. T. Fishman, A. L. Frank, J. W. Watts, B. Wiegel, Ionizing Radiation Exposure Of LDEF (Prerecovery Estimates, Vol. 20 of Nuclear Tracks And Radiation Measurements (1992), pp. 75–100.

Frank, A. L.

E. V. Benton, W. Heinrich, T. A. Parnell, T. W. Armstrong, J. H. Derrickson, G. T. Fishman, A. L. Frank, J. W. Watts, B. Wiegel, Ionizing Radiation Exposure Of LDEF (Prerecovery Estimates, Vol. 20 of Nuclear Tracks And Radiation Measurements (1992), pp. 75–100.

Gillis, J. J.

R. J. Bourassa, J. J. Gillis, “Atomic oxygen exposure of LDEF experiment trays,” Contractor Rep. 189627 (NASA Langely Research Center, Hampton, Va., 1991).

Goldstein, F.

F. Goldstein, “Optical filters,” in Methods of Experimental Physics, D. Malacara, ed. (Academic, New York, 1988), Vol. 25, pp. 273–301.
[CrossRef]

Grillot, P. N.

Harvey, G. A.

G. A. Harvey, NASA Langley Research Center, Hampton, Va. 23665-5225 (personal communications, 1991).

Heinrich, W.

E. V. Benton, W. Heinrich, T. A. Parnell, T. W. Armstrong, J. H. Derrickson, G. T. Fishman, A. L. Frank, J. W. Watts, B. Wiegel, Ionizing Radiation Exposure Of LDEF (Prerecovery Estimates, Vol. 20 of Nuclear Tracks And Radiation Measurements (1992), pp. 75–100.

Linden, E. G.

E. G. Linden, “Aerospace electronic materials: applications/environments/effects,” Electro-Technology (December1961), pp. 125–131, and references therein.

Nicoletta, C. A.

C. A. Nicoletta, A. G. Eubanks, “Effect of simulated radiation on selected optical materials,” Appl. Opt. 6, 1365–1370 (1972).
[CrossRef]

Parnell, T. A.

E. V. Benton, W. Heinrich, T. A. Parnell, T. W. Armstrong, J. H. Derrickson, G. T. Fishman, A. L. Frank, J. W. Watts, B. Wiegel, Ionizing Radiation Exposure Of LDEF (Prerecovery Estimates, Vol. 20 of Nuclear Tracks And Radiation Measurements (1992), pp. 75–100.

Pellicory, S. F.

Rosenberg, W. J.

Russell, E. E.

Shetter, M. T.

Watts, J. W.

E. V. Benton, W. Heinrich, T. A. Parnell, T. W. Armstrong, J. H. Derrickson, G. T. Fishman, A. L. Frank, J. W. Watts, B. Wiegel, Ionizing Radiation Exposure Of LDEF (Prerecovery Estimates, Vol. 20 of Nuclear Tracks And Radiation Measurements (1992), pp. 75–100.

Watts, L. A.

Wiegel, B.

E. V. Benton, W. Heinrich, T. A. Parnell, T. W. Armstrong, J. H. Derrickson, G. T. Fishman, A. L. Frank, J. W. Watts, B. Wiegel, Ionizing Radiation Exposure Of LDEF (Prerecovery Estimates, Vol. 20 of Nuclear Tracks And Radiation Measurements (1992), pp. 75–100.

Appl. Opt.

Electro-Technology

E. G. Linden, “Aerospace electronic materials: applications/environments/effects,” Electro-Technology (December1961), pp. 125–131, and references therein.

Other

G. A. Harvey, NASA Langley Research Center, Hampton, Va. 23665-5225 (personal communications, 1991).

Optical Design, U.S. Government Publ. MIL-HDBK-141, Military Standardization Series (U.S. Government Printing Office, Washington, D.C., 5October1962), Paragraph 20.4.8.2.2.

Session on Space Environmental Effects—Materials, Part 2, in LDEF-69 Months in Space, A. S. Levine, ed., NASA Conference Publication 3134 (National Aeronautics and Space Administration), Washington, D.C., 1991).

Kindly supplied by Corion Corp., Holliston, Mass.

F. Goldstein, “Optical filters,” in Methods of Experimental Physics, D. Malacara, ed. (Academic, New York, 1988), Vol. 25, pp. 273–301.
[CrossRef]

E. V. Benton, W. Heinrich, T. A. Parnell, T. W. Armstrong, J. H. Derrickson, G. T. Fishman, A. L. Frank, J. W. Watts, B. Wiegel, Ionizing Radiation Exposure Of LDEF (Prerecovery Estimates, Vol. 20 of Nuclear Tracks And Radiation Measurements (1992), pp. 75–100.

R. J. Bourassa, J. J. Gillis, “Atomic oxygen exposure of LDEF experiment trays,” Contractor Rep. 189627 (NASA Langely Research Center, Hampton, Va., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Location of the Active Optical System Components experiment on the LDEF. In this location, expected effects from atomic oxygen and particle impacts are reduced from leading-edge locations.

Fig. 2
Fig. 2

Prelaunch and postrecovery transmission of narrow-band filter number 1.

Fig. 3
Fig. 3

Prelaunch and postrecovery transmission of narrow-band filter number 2. This filter was protected from the space environment by an Al cover.

Fig. 4
Fig. 4

Prelaunch and postrecovery transmission of narrow-band filter number 3.

Fig. 5
Fig. 5

Prelaunch and postrecovery transmission of narrow-band filter number 4.

Fig. 6
Fig. 6

Prelaunch and postrecovery transmission of narrow-band filter number 5.

Fig. 7
Fig. 7

Prelaunch and postrecovery transmission of two infrared-suppression filters. Filter number 9 was under an Al cover during the period in orbit and is shown as a dashed curve. The dotted curve is the postrecovery transmission of the filter directly exposed to the space environment.

Fig. 8
Fig. 8

Prelaunch and postrecovery transmission of one of two neutral density filters. The covered neutral density filter was unchanged. The exposed filter, shown here, showed increased transmission.

Tables (3)

Tables Icon

Table 1 Optical Filter Properties of Narrow-Band Filters

Tables Icon

Table 2 Optical Filter Properties of Neutral Density Band Filters

Tables Icon

Table 3 Optical Properties of Broadband Filters

Metrics