Abstract

Planar, surface, and buried optical waveguides were fabricated by using an electric field-assisted K+ ion exchange in soda-lime glass. The refractive-index (concentration) profiles were determined by using scanning electron microscopyand mode-index measurements. These profiles were theoretically modeled by solving the diffusion equation numerically and correlated well with the scanning electron microscopy measurements. For single-mode surface waveguides, mode-index measurements were made to establish the effective guide depth and migration velocity, given the electric field, the temperature, and the time. The migration velocity was found to be different from that for the multimode case. For buried waveguides the profile was modeled by a modified buried Fermi distribution whose fitting parameters were determined for the given fabrication conditions.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” IEEE J. Lightwave Technol. LT 6, 984–1002 (1988).
    [CrossRef]
  2. K. Iga, S. Misawa, “Distributed-index planar microlens and stacked planar optics: a review of progress,” Appl. Opt. 25, 3388–3396 (1986).
    [CrossRef] [PubMed]
  3. G. H. Chartier, P. Jaussaud, A. D. De Oliveira, O. Parriaux, “Optical waveguides fabricated by electric field controlled ion-exchange in glass,” Electron. Lett 14, 132–134 (1978).
    [CrossRef]
  4. T. Izawa, H. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plates,” Appl. Phys. Lett. 21, 584–586 (1972).
    [CrossRef]
  5. M. Abou-el-Liel, F. Leonberger, “Model for ion-exchanged waveguides in glass,” J. Am. Ceram. Soc. 71, 497–502 (1988).
    [CrossRef]
  6. B. G. Pantchev, “One-step field-assisted ion exchange for fabrication of buried multimode optical strip waveguides,” Electron. Lett. 23, 1188–1190 (1987).
    [CrossRef]
  7. G. Chartier, P. Collier, A. Guez, P. Jaussaud, Y. Won, “Graded-index surface or buried waveguides by ion-exchange in glass,” Appl. Opt. 19, 1092–1095 (1980).
    [CrossRef] [PubMed]
  8. R. V. Ramaswamy, H. C. Cheng, R. Srivastava, “Process optimization of buried Ag+–Na+ ion-exchanged waveguides: theory and experiment,” Appl. Opt. 27, 1814–1819 (1988).
    [CrossRef] [PubMed]
  9. G. L. Yip, J. Albert, “Characterization of planar optical waveguides by K+-ion exchange in glass,” Opt. Lett. 10, 151–153 (1985).
    [CrossRef] [PubMed]
  10. G. L. Yip, J. Finak, “Directional-coupler power divider by two-step K+-ion exchange,” Opt. Lett. 9, 423–425 (1984).
    [CrossRef] [PubMed]
  11. T. Findakly, B. Chen, “Single-mode integrated optical 1 × N star-coupler,” Appl. Phys. Lett. 10, 549–550 (1982).
    [CrossRef]
  12. N. A. Sanford, K. J. Malone, D. R. Larson, “Integrated optic laser fabricated by field-assisted ion-exchange in neodymium-doped soda-lime glass,” Opt. Lett. 15, 366–368 (1990).
    [CrossRef] [PubMed]
  13. D. Jestel, A. Baus, E. Voges, “Integrated-optic interferometric microdisplacement sensor in glass with thermo-optic phase modulation,” Electron. Lett 26, 1144–1145 (1990).
    [CrossRef]
  14. A. Miliou, H. Zhenguang, H. C. Cheng, R. Srivastava, R. V. Ramaswamy, “Fiber-compatible K+–Na+ ion-exchanged channel waveguides: fabrication and characterization,” IEEE J. Quantum Electron. 25, 1889–1897 (1989).
    [CrossRef]
  15. G. L. Yip, P. C. Noutsios, K. Kishioka, “Characteristics of optical waveguides made by electric-field-assisted K+-ion exchange in glass,” Opt. Lett. 15, 789–791 (1990).
    [CrossRef] [PubMed]
  16. J. Albert, G. L. Yip, “Wide single-mode channels and directional coupler by two-step ion-exchange in glass,” IEEE J. Lightwave Technol. LT-6, 552–563 (1988).
    [CrossRef]
  17. P. C. Noutsios, G. L. Yip, “Shallow buried waveguides made by purely thermal migration of K+ ions in glass,” Opt. Lett. 15, 212–214 (1990).
    [CrossRef] [PubMed]
  18. R. K. Lagu, R. V. Ramaswamy, “Silver ion-exchanged, buried, glass optical waveguides with symmetric index profile,” Appl. Phys. Lett 48, 19–20 (1986).
    [CrossRef]
  19. V. D. Scott, G. Love, Quantitative Electron-Probe Microanalysis, Ellis Horwood Series in Physics (Wiley, New York, 1983).
  20. A. Brandenburg, “Stress in ion-exchanged glass waveguides,” IEEE J. Lightwave Technol. LT-4,. 1580–1593 (1986).
    [CrossRef]
  21. S. Urnes, “Na–K exchange in silicate glasses,” J. Am. Ceram. Soc. 56, 514–519 (1973).
    [CrossRef]
  22. A. Beguin, T. Dumas, M. J. Hackert, R. Jansen, C. Nissim, “Fabrication and performance of low loss optical components made by ion exchange in glass,” IEEE J. Lightwave Technol. LT-6, 1483–1487 (1988).
    [CrossRef]
  23. P. C. Noutsios, G. L. Yip, “Diffusion and propagation characteristics of buried single-mode waveguides in glass,” IEEE J. Quantum Electron. 27, 549–555 (1991).
    [CrossRef]
  24. P. K. Tien, R. Ulrich, “Theory of prism–film coupler and thin-film lightguides,” J. Opt.Soc. Am. 60, 1325–1337 (1970).
    [CrossRef]
  25. G. Stewart, C. A. Miller, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De LaRue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
    [CrossRef]
  26. R. V. Ramaswamy, S. I. Najafi, “Planar, buried, ion-exchanged glass waveguides: diffusion characteristics,” IEEE J. Quantum Electron. QE-22, 883–891 (1986).
    [CrossRef]
  27. H. J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron QE-18, 1877–1883 (1982).
    [CrossRef]
  28. H. Ohta, M. Hara, “Ion-exchange in sheet glass by electrolysis,” Yogyo Kyokai Shi 78 (5), 158–164 (1970).
    [CrossRef]
  29. T. Chiba, S. Misawa, K. Iga, M. Oikawa, “Distributed index formation of planar microlens (II),” Opt. Quantum Electron. 84–88, 39–45 (1984) (in Japanses).
  30. J. Albert, J. W. Y. Lit, “Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides,” Appl. Opt. 29, 2798–2804 (1990).
    [CrossRef] [PubMed]
  31. R. H. Doremus, “Ion exchange in glasses,” in Ion-Exchange, J. A. Marinsky, ed. (Dekker, New York; 1969), Vol 2.
  32. J. Albert, G. L. Yip, “Refractive-index profiles of planar waveguides made by ion-exchange in glass,” Appl. Opt. 24, 3692–3693 (1985).
    [CrossRef] [PubMed]
  33. J. Albert, G. L. Yip, “Insertion loss reduction between single-mode fibers and diffused channel waveguides,” Appl. Opt. 27, 4837–4843 (1988).
    [CrossRef] [PubMed]
  34. H. Yoshida, T. Kataoka, “Migration of two ions during electrolysis of glass waveguide,” J. Appl. Phys. 58, 1739–1743 (1985).
    [CrossRef]

1991 (1)

P. C. Noutsios, G. L. Yip, “Diffusion and propagation characteristics of buried single-mode waveguides in glass,” IEEE J. Quantum Electron. 27, 549–555 (1991).
[CrossRef]

1990 (5)

1989 (1)

A. Miliou, H. Zhenguang, H. C. Cheng, R. Srivastava, R. V. Ramaswamy, “Fiber-compatible K+–Na+ ion-exchanged channel waveguides: fabrication and characterization,” IEEE J. Quantum Electron. 25, 1889–1897 (1989).
[CrossRef]

1988 (6)

J. Albert, G. L. Yip, “Wide single-mode channels and directional coupler by two-step ion-exchange in glass,” IEEE J. Lightwave Technol. LT-6, 552–563 (1988).
[CrossRef]

R. V. Ramaswamy, H. C. Cheng, R. Srivastava, “Process optimization of buried Ag+–Na+ ion-exchanged waveguides: theory and experiment,” Appl. Opt. 27, 1814–1819 (1988).
[CrossRef] [PubMed]

J. Albert, G. L. Yip, “Insertion loss reduction between single-mode fibers and diffused channel waveguides,” Appl. Opt. 27, 4837–4843 (1988).
[CrossRef] [PubMed]

A. Beguin, T. Dumas, M. J. Hackert, R. Jansen, C. Nissim, “Fabrication and performance of low loss optical components made by ion exchange in glass,” IEEE J. Lightwave Technol. LT-6, 1483–1487 (1988).
[CrossRef]

M. Abou-el-Liel, F. Leonberger, “Model for ion-exchanged waveguides in glass,” J. Am. Ceram. Soc. 71, 497–502 (1988).
[CrossRef]

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” IEEE J. Lightwave Technol. LT 6, 984–1002 (1988).
[CrossRef]

1987 (1)

B. G. Pantchev, “One-step field-assisted ion exchange for fabrication of buried multimode optical strip waveguides,” Electron. Lett. 23, 1188–1190 (1987).
[CrossRef]

1986 (4)

R. K. Lagu, R. V. Ramaswamy, “Silver ion-exchanged, buried, glass optical waveguides with symmetric index profile,” Appl. Phys. Lett 48, 19–20 (1986).
[CrossRef]

A. Brandenburg, “Stress in ion-exchanged glass waveguides,” IEEE J. Lightwave Technol. LT-4,. 1580–1593 (1986).
[CrossRef]

R. V. Ramaswamy, S. I. Najafi, “Planar, buried, ion-exchanged glass waveguides: diffusion characteristics,” IEEE J. Quantum Electron. QE-22, 883–891 (1986).
[CrossRef]

K. Iga, S. Misawa, “Distributed-index planar microlens and stacked planar optics: a review of progress,” Appl. Opt. 25, 3388–3396 (1986).
[CrossRef] [PubMed]

1985 (3)

1984 (2)

G. L. Yip, J. Finak, “Directional-coupler power divider by two-step K+-ion exchange,” Opt. Lett. 9, 423–425 (1984).
[CrossRef] [PubMed]

T. Chiba, S. Misawa, K. Iga, M. Oikawa, “Distributed index formation of planar microlens (II),” Opt. Quantum Electron. 84–88, 39–45 (1984) (in Japanses).

1982 (2)

T. Findakly, B. Chen, “Single-mode integrated optical 1 × N star-coupler,” Appl. Phys. Lett. 10, 549–550 (1982).
[CrossRef]

H. J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron QE-18, 1877–1883 (1982).
[CrossRef]

1980 (1)

1978 (1)

G. H. Chartier, P. Jaussaud, A. D. De Oliveira, O. Parriaux, “Optical waveguides fabricated by electric field controlled ion-exchange in glass,” Electron. Lett 14, 132–134 (1978).
[CrossRef]

1977 (1)

G. Stewart, C. A. Miller, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De LaRue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

1973 (1)

S. Urnes, “Na–K exchange in silicate glasses,” J. Am. Ceram. Soc. 56, 514–519 (1973).
[CrossRef]

1972 (1)

T. Izawa, H. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plates,” Appl. Phys. Lett. 21, 584–586 (1972).
[CrossRef]

1970 (2)

P. K. Tien, R. Ulrich, “Theory of prism–film coupler and thin-film lightguides,” J. Opt.Soc. Am. 60, 1325–1337 (1970).
[CrossRef]

H. Ohta, M. Hara, “Ion-exchange in sheet glass by electrolysis,” Yogyo Kyokai Shi 78 (5), 158–164 (1970).
[CrossRef]

Abou-el-Liel, M.

M. Abou-el-Liel, F. Leonberger, “Model for ion-exchanged waveguides in glass,” J. Am. Ceram. Soc. 71, 497–502 (1988).
[CrossRef]

Albert, J.

Baus, A.

D. Jestel, A. Baus, E. Voges, “Integrated-optic interferometric microdisplacement sensor in glass with thermo-optic phase modulation,” Electron. Lett 26, 1144–1145 (1990).
[CrossRef]

Beguin, A.

A. Beguin, T. Dumas, M. J. Hackert, R. Jansen, C. Nissim, “Fabrication and performance of low loss optical components made by ion exchange in glass,” IEEE J. Lightwave Technol. LT-6, 1483–1487 (1988).
[CrossRef]

Brandenburg, A.

A. Brandenburg, “Stress in ion-exchanged glass waveguides,” IEEE J. Lightwave Technol. LT-4,. 1580–1593 (1986).
[CrossRef]

Chartier, G.

Chartier, G. H.

G. H. Chartier, P. Jaussaud, A. D. De Oliveira, O. Parriaux, “Optical waveguides fabricated by electric field controlled ion-exchange in glass,” Electron. Lett 14, 132–134 (1978).
[CrossRef]

Chen, B.

T. Findakly, B. Chen, “Single-mode integrated optical 1 × N star-coupler,” Appl. Phys. Lett. 10, 549–550 (1982).
[CrossRef]

Cheng, H. C.

A. Miliou, H. Zhenguang, H. C. Cheng, R. Srivastava, R. V. Ramaswamy, “Fiber-compatible K+–Na+ ion-exchanged channel waveguides: fabrication and characterization,” IEEE J. Quantum Electron. 25, 1889–1897 (1989).
[CrossRef]

R. V. Ramaswamy, H. C. Cheng, R. Srivastava, “Process optimization of buried Ag+–Na+ ion-exchanged waveguides: theory and experiment,” Appl. Opt. 27, 1814–1819 (1988).
[CrossRef] [PubMed]

Chiba, T.

T. Chiba, S. Misawa, K. Iga, M. Oikawa, “Distributed index formation of planar microlens (II),” Opt. Quantum Electron. 84–88, 39–45 (1984) (in Japanses).

Collier, P.

De LaRue, R. M.

G. Stewart, C. A. Miller, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De LaRue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

De Oliveira, A. D.

G. H. Chartier, P. Jaussaud, A. D. De Oliveira, O. Parriaux, “Optical waveguides fabricated by electric field controlled ion-exchange in glass,” Electron. Lett 14, 132–134 (1978).
[CrossRef]

Doremus, R. H.

R. H. Doremus, “Ion exchange in glasses,” in Ion-Exchange, J. A. Marinsky, ed. (Dekker, New York; 1969), Vol 2.

Dumas, T.

A. Beguin, T. Dumas, M. J. Hackert, R. Jansen, C. Nissim, “Fabrication and performance of low loss optical components made by ion exchange in glass,” IEEE J. Lightwave Technol. LT-6, 1483–1487 (1988).
[CrossRef]

Finak, J.

Findakly, T.

T. Findakly, B. Chen, “Single-mode integrated optical 1 × N star-coupler,” Appl. Phys. Lett. 10, 549–550 (1982).
[CrossRef]

Guez, A.

Hackert, M. J.

A. Beguin, T. Dumas, M. J. Hackert, R. Jansen, C. Nissim, “Fabrication and performance of low loss optical components made by ion exchange in glass,” IEEE J. Lightwave Technol. LT-6, 1483–1487 (1988).
[CrossRef]

Hara, M.

H. Ohta, M. Hara, “Ion-exchange in sheet glass by electrolysis,” Yogyo Kyokai Shi 78 (5), 158–164 (1970).
[CrossRef]

Iga, K.

K. Iga, S. Misawa, “Distributed-index planar microlens and stacked planar optics: a review of progress,” Appl. Opt. 25, 3388–3396 (1986).
[CrossRef] [PubMed]

T. Chiba, S. Misawa, K. Iga, M. Oikawa, “Distributed index formation of planar microlens (II),” Opt. Quantum Electron. 84–88, 39–45 (1984) (in Japanses).

Izawa, T.

T. Izawa, H. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plates,” Appl. Phys. Lett. 21, 584–586 (1972).
[CrossRef]

Jansen, R.

A. Beguin, T. Dumas, M. J. Hackert, R. Jansen, C. Nissim, “Fabrication and performance of low loss optical components made by ion exchange in glass,” IEEE J. Lightwave Technol. LT-6, 1483–1487 (1988).
[CrossRef]

Jaussaud, P.

G. Chartier, P. Collier, A. Guez, P. Jaussaud, Y. Won, “Graded-index surface or buried waveguides by ion-exchange in glass,” Appl. Opt. 19, 1092–1095 (1980).
[CrossRef] [PubMed]

G. H. Chartier, P. Jaussaud, A. D. De Oliveira, O. Parriaux, “Optical waveguides fabricated by electric field controlled ion-exchange in glass,” Electron. Lett 14, 132–134 (1978).
[CrossRef]

Jestel, D.

D. Jestel, A. Baus, E. Voges, “Integrated-optic interferometric microdisplacement sensor in glass with thermo-optic phase modulation,” Electron. Lett 26, 1144–1145 (1990).
[CrossRef]

Kataoka, T.

H. Yoshida, T. Kataoka, “Migration of two ions during electrolysis of glass waveguide,” J. Appl. Phys. 58, 1739–1743 (1985).
[CrossRef]

Kishioka, K.

Lagu, R. K.

R. K. Lagu, R. V. Ramaswamy, “Silver ion-exchanged, buried, glass optical waveguides with symmetric index profile,” Appl. Phys. Lett 48, 19–20 (1986).
[CrossRef]

Larson, D. R.

Laybourn, P. J. R.

G. Stewart, C. A. Miller, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De LaRue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

Leonberger, F.

M. Abou-el-Liel, F. Leonberger, “Model for ion-exchanged waveguides in glass,” J. Am. Ceram. Soc. 71, 497–502 (1988).
[CrossRef]

Lilienhof, H. J.

H. J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron QE-18, 1877–1883 (1982).
[CrossRef]

Lit, J. W. Y.

Love, G.

V. D. Scott, G. Love, Quantitative Electron-Probe Microanalysis, Ellis Horwood Series in Physics (Wiley, New York, 1983).

Malone, K. J.

Miliou, A.

A. Miliou, H. Zhenguang, H. C. Cheng, R. Srivastava, R. V. Ramaswamy, “Fiber-compatible K+–Na+ ion-exchanged channel waveguides: fabrication and characterization,” IEEE J. Quantum Electron. 25, 1889–1897 (1989).
[CrossRef]

Miller, C. A.

G. Stewart, C. A. Miller, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De LaRue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

Misawa, S.

K. Iga, S. Misawa, “Distributed-index planar microlens and stacked planar optics: a review of progress,” Appl. Opt. 25, 3388–3396 (1986).
[CrossRef] [PubMed]

T. Chiba, S. Misawa, K. Iga, M. Oikawa, “Distributed index formation of planar microlens (II),” Opt. Quantum Electron. 84–88, 39–45 (1984) (in Japanses).

Najafi, S. I.

R. V. Ramaswamy, S. I. Najafi, “Planar, buried, ion-exchanged glass waveguides: diffusion characteristics,” IEEE J. Quantum Electron. QE-22, 883–891 (1986).
[CrossRef]

Nakagome, H.

T. Izawa, H. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plates,” Appl. Phys. Lett. 21, 584–586 (1972).
[CrossRef]

Nissim, C.

A. Beguin, T. Dumas, M. J. Hackert, R. Jansen, C. Nissim, “Fabrication and performance of low loss optical components made by ion exchange in glass,” IEEE J. Lightwave Technol. LT-6, 1483–1487 (1988).
[CrossRef]

Noutsios, P. C.

Ohta, H.

H. Ohta, M. Hara, “Ion-exchange in sheet glass by electrolysis,” Yogyo Kyokai Shi 78 (5), 158–164 (1970).
[CrossRef]

Oikawa, M.

T. Chiba, S. Misawa, K. Iga, M. Oikawa, “Distributed index formation of planar microlens (II),” Opt. Quantum Electron. 84–88, 39–45 (1984) (in Japanses).

Pantchev, B. G.

B. G. Pantchev, “One-step field-assisted ion exchange for fabrication of buried multimode optical strip waveguides,” Electron. Lett. 23, 1188–1190 (1987).
[CrossRef]

Pantschew, B.

H. J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron QE-18, 1877–1883 (1982).
[CrossRef]

Parriaux, O.

G. H. Chartier, P. Jaussaud, A. D. De Oliveira, O. Parriaux, “Optical waveguides fabricated by electric field controlled ion-exchange in glass,” Electron. Lett 14, 132–134 (1978).
[CrossRef]

Ramaswamy, R. V.

A. Miliou, H. Zhenguang, H. C. Cheng, R. Srivastava, R. V. Ramaswamy, “Fiber-compatible K+–Na+ ion-exchanged channel waveguides: fabrication and characterization,” IEEE J. Quantum Electron. 25, 1889–1897 (1989).
[CrossRef]

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” IEEE J. Lightwave Technol. LT 6, 984–1002 (1988).
[CrossRef]

R. V. Ramaswamy, H. C. Cheng, R. Srivastava, “Process optimization of buried Ag+–Na+ ion-exchanged waveguides: theory and experiment,” Appl. Opt. 27, 1814–1819 (1988).
[CrossRef] [PubMed]

R. V. Ramaswamy, S. I. Najafi, “Planar, buried, ion-exchanged glass waveguides: diffusion characteristics,” IEEE J. Quantum Electron. QE-22, 883–891 (1986).
[CrossRef]

R. K. Lagu, R. V. Ramaswamy, “Silver ion-exchanged, buried, glass optical waveguides with symmetric index profile,” Appl. Phys. Lett 48, 19–20 (1986).
[CrossRef]

Ritter, D.

H. J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron QE-18, 1877–1883 (1982).
[CrossRef]

Sanford, N. A.

Scott, V. D.

V. D. Scott, G. Love, Quantitative Electron-Probe Microanalysis, Ellis Horwood Series in Physics (Wiley, New York, 1983).

Srivastava, R.

A. Miliou, H. Zhenguang, H. C. Cheng, R. Srivastava, R. V. Ramaswamy, “Fiber-compatible K+–Na+ ion-exchanged channel waveguides: fabrication and characterization,” IEEE J. Quantum Electron. 25, 1889–1897 (1989).
[CrossRef]

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” IEEE J. Lightwave Technol. LT 6, 984–1002 (1988).
[CrossRef]

R. V. Ramaswamy, H. C. Cheng, R. Srivastava, “Process optimization of buried Ag+–Na+ ion-exchanged waveguides: theory and experiment,” Appl. Opt. 27, 1814–1819 (1988).
[CrossRef] [PubMed]

Stewart, G.

G. Stewart, C. A. Miller, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De LaRue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

Tien, P. K.

P. K. Tien, R. Ulrich, “Theory of prism–film coupler and thin-film lightguides,” J. Opt.Soc. Am. 60, 1325–1337 (1970).
[CrossRef]

Ulrich, R.

P. K. Tien, R. Ulrich, “Theory of prism–film coupler and thin-film lightguides,” J. Opt.Soc. Am. 60, 1325–1337 (1970).
[CrossRef]

Urnes, S.

S. Urnes, “Na–K exchange in silicate glasses,” J. Am. Ceram. Soc. 56, 514–519 (1973).
[CrossRef]

Voges, E.

D. Jestel, A. Baus, E. Voges, “Integrated-optic interferometric microdisplacement sensor in glass with thermo-optic phase modulation,” Electron. Lett 26, 1144–1145 (1990).
[CrossRef]

H. J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron QE-18, 1877–1883 (1982).
[CrossRef]

Wilkinson, C. D. W.

G. Stewart, C. A. Miller, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De LaRue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

Won, Y.

Yip, G. L.

Yoshida, H.

H. Yoshida, T. Kataoka, “Migration of two ions during electrolysis of glass waveguide,” J. Appl. Phys. 58, 1739–1743 (1985).
[CrossRef]

Zhenguang, H.

A. Miliou, H. Zhenguang, H. C. Cheng, R. Srivastava, R. V. Ramaswamy, “Fiber-compatible K+–Na+ ion-exchanged channel waveguides: fabrication and characterization,” IEEE J. Quantum Electron. 25, 1889–1897 (1989).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett (1)

R. K. Lagu, R. V. Ramaswamy, “Silver ion-exchanged, buried, glass optical waveguides with symmetric index profile,” Appl. Phys. Lett 48, 19–20 (1986).
[CrossRef]

Appl. Phys. Lett. (2)

T. Izawa, H. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plates,” Appl. Phys. Lett. 21, 584–586 (1972).
[CrossRef]

T. Findakly, B. Chen, “Single-mode integrated optical 1 × N star-coupler,” Appl. Phys. Lett. 10, 549–550 (1982).
[CrossRef]

Electron. Lett (2)

D. Jestel, A. Baus, E. Voges, “Integrated-optic interferometric microdisplacement sensor in glass with thermo-optic phase modulation,” Electron. Lett 26, 1144–1145 (1990).
[CrossRef]

G. H. Chartier, P. Jaussaud, A. D. De Oliveira, O. Parriaux, “Optical waveguides fabricated by electric field controlled ion-exchange in glass,” Electron. Lett 14, 132–134 (1978).
[CrossRef]

Electron. Lett. (1)

B. G. Pantchev, “One-step field-assisted ion exchange for fabrication of buried multimode optical strip waveguides,” Electron. Lett. 23, 1188–1190 (1987).
[CrossRef]

IEEE J. Lightwave Technol. (4)

R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” IEEE J. Lightwave Technol. LT 6, 984–1002 (1988).
[CrossRef]

A. Brandenburg, “Stress in ion-exchanged glass waveguides,” IEEE J. Lightwave Technol. LT-4,. 1580–1593 (1986).
[CrossRef]

A. Beguin, T. Dumas, M. J. Hackert, R. Jansen, C. Nissim, “Fabrication and performance of low loss optical components made by ion exchange in glass,” IEEE J. Lightwave Technol. LT-6, 1483–1487 (1988).
[CrossRef]

J. Albert, G. L. Yip, “Wide single-mode channels and directional coupler by two-step ion-exchange in glass,” IEEE J. Lightwave Technol. LT-6, 552–563 (1988).
[CrossRef]

IEEE J. Quantum Electron (1)

H. J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron QE-18, 1877–1883 (1982).
[CrossRef]

IEEE J. Quantum Electron. (4)

P. C. Noutsios, G. L. Yip, “Diffusion and propagation characteristics of buried single-mode waveguides in glass,” IEEE J. Quantum Electron. 27, 549–555 (1991).
[CrossRef]

G. Stewart, C. A. Miller, P. J. R. Laybourn, C. D. W. Wilkinson, R. M. De LaRue, “Planar optical waveguides formed by silver-ion migration in glass,” IEEE J. Quantum Electron. QE-13, 192–200 (1977).
[CrossRef]

R. V. Ramaswamy, S. I. Najafi, “Planar, buried, ion-exchanged glass waveguides: diffusion characteristics,” IEEE J. Quantum Electron. QE-22, 883–891 (1986).
[CrossRef]

A. Miliou, H. Zhenguang, H. C. Cheng, R. Srivastava, R. V. Ramaswamy, “Fiber-compatible K+–Na+ ion-exchanged channel waveguides: fabrication and characterization,” IEEE J. Quantum Electron. 25, 1889–1897 (1989).
[CrossRef]

J. Am. Ceram. Soc. (2)

S. Urnes, “Na–K exchange in silicate glasses,” J. Am. Ceram. Soc. 56, 514–519 (1973).
[CrossRef]

M. Abou-el-Liel, F. Leonberger, “Model for ion-exchanged waveguides in glass,” J. Am. Ceram. Soc. 71, 497–502 (1988).
[CrossRef]

J. Appl. Phys. (1)

H. Yoshida, T. Kataoka, “Migration of two ions during electrolysis of glass waveguide,” J. Appl. Phys. 58, 1739–1743 (1985).
[CrossRef]

J. Opt.Soc. Am. (1)

P. K. Tien, R. Ulrich, “Theory of prism–film coupler and thin-film lightguides,” J. Opt.Soc. Am. 60, 1325–1337 (1970).
[CrossRef]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

T. Chiba, S. Misawa, K. Iga, M. Oikawa, “Distributed index formation of planar microlens (II),” Opt. Quantum Electron. 84–88, 39–45 (1984) (in Japanses).

Yogyo Kyokai Shi (1)

H. Ohta, M. Hara, “Ion-exchange in sheet glass by electrolysis,” Yogyo Kyokai Shi 78 (5), 158–164 (1970).
[CrossRef]

Other (2)

V. D. Scott, G. Love, Quantitative Electron-Probe Microanalysis, Ellis Horwood Series in Physics (Wiley, New York, 1983).

R. H. Doremus, “Ion exchange in glasses,” in Ion-Exchange, J. A. Marinsky, ed. (Dekker, New York; 1969), Vol 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Theoretical dispersion curves of the guided modes compared with measured indices for samples prepared at Ea = 19.4 V/mm for a modified Fermi profile (times are in seconds): (a) the TE mode; (b) the TM mode.

Fig. 2
Fig. 2

Effective guide depths versus the diffusion time (the applied field is in volts per millimeter) for (a) the TE mode and (b) the TM mode.

Fig. 3
Fig. 3

Variation of Fe with the applied field Ea, for (a) the TE mode and (b) the TM mode.

Fig. 4
Fig. 4

Comparison of the variation of guide depth with diffusion time for the lower- and higher-order TE modes.

Fig. 5
Fig. 5

Effect of the ramp-time annealing process on a surface waveguide (Ea = 50.0 V/mm, t = 15 s, T = 385°C).

Fig. 6
Fig. 6

Numerical solution of Eq. (5) for a field-assisted surface guide. d, depth.

Fig. 7
Fig. 7

SEM photograph of a surface waveguide (3500×) fabricated at Ea = 21.1 V/mm, t = 20 min, and T = 385°C.

Fig. 8
Fig. 8

Comparison of the numerical solution to the scaled SEM data of the surface waveguide in Fig. 7.

Fig. 9
Fig. 9

Comparison of the modeled concentration profile to the modified Fermi profile.

Fig. 10
Fig. 10

Numerical solution of a buried waveguide fabricated at T = 385°C, t1 = 20 min, t2 = 10 min, and EaT = 19.8 V/mm.

Fig. 11
Fig. 11

SEM photograph of aburied waveguide (4000×) with the fabrication conditions quoted in Fig. 10.

Fig. 12
Fig. 12

xpeak versus t2 for Ea = 50.0 V/mm, t1 = 15 s and Ea = 19.4 V/mm, t1 = 40 s.

Fig. 13
Fig. 13

npeak versus t2 for E0 = 50.0 V/mm, t1 = 15 s and Ea = 19.4 V/mm, t1 = 40 s.

Fig. 14
Fig. 14

Evolution of the buried concentration profiles (solid curves); the surface concentration profile is for Ea = 50 V/mm, t1 = 15 (dashed curves).

Fig. 15
Fig. 15

Numerical simulation of Eq. (5) fitted to a buried Fermi function and compared with scaled SEM data with the fabrication conditions quoted in Fig. 10.

Tables (3)

Tables Icon

Table 1 Migration Velocities and Exchange Depths for Two Applied Fields at 385°C

Tables Icon

Table 2 Comparison Between the Effective Guide and the Diffused Profile Depths

Tables Icon

Table 3 Quantitative Electron-Probe Microanalysis

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d = ( D e t ) 1 / 2 ,
d = ( D e t ) 1 / 2 + F e t + K 0 ,
F e = A 1 E a T
n ( x ) = n b + Δ n s [ 1 - exp ( - d a ) + exp ( x - d a ) ] - 1 ,
N e ( meas ) - N e ( theor ) = ( 1.8 ± 2.1 ) × 10 - 4 ,
t ( d ) = 1 2 ( D e t ) 1 / 2 + F e .
c t = x ( D K 1 - α c c x ) - μ K E a T ( 1 - α c ) c x ,
x peak = ( B e t 2 ) 1 / 2 + B f e t 2 + C ,
n ( x ) = n b + Δ n s f ( x ) ,
f ( x ) = A x 1 + + exp x ,

Metrics