Abstract

We have proposed a novel concept of planar microlens relay optics with the goal of realizing alignment-free and multifunctional integrated optical subsystems. Since the planar microlens is one of its key elements, its lateral focusing characteristics were examined. The measured focusing spot size was 3 μm × 7 μm, which is comparable with the core of single-mode optical fibers. By measuring the refractive-index distribution, we found that the planar microlens produced by the electromigration method has a desirable index distribution that resembles that of a Luneburg lens. Thus we conclude that planar microlens relay optics may be facilitated when the lateral focusing property of planar microlenses is used.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, M. Oikawa, S. Misawa, J. Banno, Y. Kokubun, “Stacked planar optics: an application of the planar microlens,” Appl. Opt. 21, 3456–3460 (1982).
    [CrossRef] [PubMed]
  2. Y. Kokubun, T. Baba, K. Iga, “Silicon optical printed circuit board for three-dimensional integrated optics,” Electron. Lett. 21, 508–509 (1985).
  3. M. Kawachi, Y. Yamada, M. Yasu, M. Kobayashi, “Guided-wave optical wavelength-division multi/demultiplexer using high-silica channel waveguides,” Electron. Lett. 21, 314–316 (1985).
    [CrossRef]
  4. H. Yanagawa, T. Ochiai, H. Hayakawa, H. Miyazawa, “Filter embedded design and its applications to passive components,” IEEE J. Lightwave Technol. 7, 1646–1653 (1989).
    [CrossRef]
  5. M. Oikawa, K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).
    [CrossRef] [PubMed]
  6. M. Oikawa, K. Iga, T. Sanada, “Distributed-index planar microlens array prepared from deep electromigration,” Electron. Lett. 17, 452–454 (1981).
    [CrossRef]
  7. T. Izawa, T. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plate,” Appl. Phys. Lett. 21, 581–586 (1972).
    [CrossRef]
  8. S. Misawa, M. Oikawa, K. Iga, “Ray tracing in a distributed-index planar microlens,” Jpn. J. Appl. Phys. 21, L589–L591 (1982).
    [CrossRef]
  9. Y. Kokubun, K. Iga, “Index profiling of distributed-index lenses by a shearing interference method,” Appl. Opt. 21, 1030–1034 (1982).
    [CrossRef] [PubMed]
  10. S. Misawa, K. Iga, “Estimation of a planar microlens by oblique ray tracing,” Appl. Opt. 27, 480–485 (1988).
    [CrossRef] [PubMed]

1989

H. Yanagawa, T. Ochiai, H. Hayakawa, H. Miyazawa, “Filter embedded design and its applications to passive components,” IEEE J. Lightwave Technol. 7, 1646–1653 (1989).
[CrossRef]

1988

1985

Y. Kokubun, T. Baba, K. Iga, “Silicon optical printed circuit board for three-dimensional integrated optics,” Electron. Lett. 21, 508–509 (1985).

M. Kawachi, Y. Yamada, M. Yasu, M. Kobayashi, “Guided-wave optical wavelength-division multi/demultiplexer using high-silica channel waveguides,” Electron. Lett. 21, 314–316 (1985).
[CrossRef]

1982

1981

M. Oikawa, K. Iga, T. Sanada, “Distributed-index planar microlens array prepared from deep electromigration,” Electron. Lett. 17, 452–454 (1981).
[CrossRef]

1972

T. Izawa, T. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plate,” Appl. Phys. Lett. 21, 581–586 (1972).
[CrossRef]

Baba, T.

Y. Kokubun, T. Baba, K. Iga, “Silicon optical printed circuit board for three-dimensional integrated optics,” Electron. Lett. 21, 508–509 (1985).

Banno, J.

Hayakawa, H.

H. Yanagawa, T. Ochiai, H. Hayakawa, H. Miyazawa, “Filter embedded design and its applications to passive components,” IEEE J. Lightwave Technol. 7, 1646–1653 (1989).
[CrossRef]

Iga, K.

S. Misawa, K. Iga, “Estimation of a planar microlens by oblique ray tracing,” Appl. Opt. 27, 480–485 (1988).
[CrossRef] [PubMed]

Y. Kokubun, T. Baba, K. Iga, “Silicon optical printed circuit board for three-dimensional integrated optics,” Electron. Lett. 21, 508–509 (1985).

Y. Kokubun, K. Iga, “Index profiling of distributed-index lenses by a shearing interference method,” Appl. Opt. 21, 1030–1034 (1982).
[CrossRef] [PubMed]

S. Misawa, M. Oikawa, K. Iga, “Ray tracing in a distributed-index planar microlens,” Jpn. J. Appl. Phys. 21, L589–L591 (1982).
[CrossRef]

K. Iga, M. Oikawa, S. Misawa, J. Banno, Y. Kokubun, “Stacked planar optics: an application of the planar microlens,” Appl. Opt. 21, 3456–3460 (1982).
[CrossRef] [PubMed]

M. Oikawa, K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).
[CrossRef] [PubMed]

M. Oikawa, K. Iga, T. Sanada, “Distributed-index planar microlens array prepared from deep electromigration,” Electron. Lett. 17, 452–454 (1981).
[CrossRef]

Izawa, T.

T. Izawa, T. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plate,” Appl. Phys. Lett. 21, 581–586 (1972).
[CrossRef]

Kawachi, M.

M. Kawachi, Y. Yamada, M. Yasu, M. Kobayashi, “Guided-wave optical wavelength-division multi/demultiplexer using high-silica channel waveguides,” Electron. Lett. 21, 314–316 (1985).
[CrossRef]

Kobayashi, M.

M. Kawachi, Y. Yamada, M. Yasu, M. Kobayashi, “Guided-wave optical wavelength-division multi/demultiplexer using high-silica channel waveguides,” Electron. Lett. 21, 314–316 (1985).
[CrossRef]

Kokubun, Y.

Misawa, S.

Miyazawa, H.

H. Yanagawa, T. Ochiai, H. Hayakawa, H. Miyazawa, “Filter embedded design and its applications to passive components,” IEEE J. Lightwave Technol. 7, 1646–1653 (1989).
[CrossRef]

Nakagome, T.

T. Izawa, T. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plate,” Appl. Phys. Lett. 21, 581–586 (1972).
[CrossRef]

Ochiai, T.

H. Yanagawa, T. Ochiai, H. Hayakawa, H. Miyazawa, “Filter embedded design and its applications to passive components,” IEEE J. Lightwave Technol. 7, 1646–1653 (1989).
[CrossRef]

Oikawa, M.

S. Misawa, M. Oikawa, K. Iga, “Ray tracing in a distributed-index planar microlens,” Jpn. J. Appl. Phys. 21, L589–L591 (1982).
[CrossRef]

M. Oikawa, K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).
[CrossRef] [PubMed]

K. Iga, M. Oikawa, S. Misawa, J. Banno, Y. Kokubun, “Stacked planar optics: an application of the planar microlens,” Appl. Opt. 21, 3456–3460 (1982).
[CrossRef] [PubMed]

M. Oikawa, K. Iga, T. Sanada, “Distributed-index planar microlens array prepared from deep electromigration,” Electron. Lett. 17, 452–454 (1981).
[CrossRef]

Sanada, T.

M. Oikawa, K. Iga, T. Sanada, “Distributed-index planar microlens array prepared from deep electromigration,” Electron. Lett. 17, 452–454 (1981).
[CrossRef]

Yamada, Y.

M. Kawachi, Y. Yamada, M. Yasu, M. Kobayashi, “Guided-wave optical wavelength-division multi/demultiplexer using high-silica channel waveguides,” Electron. Lett. 21, 314–316 (1985).
[CrossRef]

Yanagawa, H.

H. Yanagawa, T. Ochiai, H. Hayakawa, H. Miyazawa, “Filter embedded design and its applications to passive components,” IEEE J. Lightwave Technol. 7, 1646–1653 (1989).
[CrossRef]

Yasu, M.

M. Kawachi, Y. Yamada, M. Yasu, M. Kobayashi, “Guided-wave optical wavelength-division multi/demultiplexer using high-silica channel waveguides,” Electron. Lett. 21, 314–316 (1985).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Izawa, T. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plate,” Appl. Phys. Lett. 21, 581–586 (1972).
[CrossRef]

Electron. Lett.

Y. Kokubun, T. Baba, K. Iga, “Silicon optical printed circuit board for three-dimensional integrated optics,” Electron. Lett. 21, 508–509 (1985).

M. Kawachi, Y. Yamada, M. Yasu, M. Kobayashi, “Guided-wave optical wavelength-division multi/demultiplexer using high-silica channel waveguides,” Electron. Lett. 21, 314–316 (1985).
[CrossRef]

M. Oikawa, K. Iga, T. Sanada, “Distributed-index planar microlens array prepared from deep electromigration,” Electron. Lett. 17, 452–454 (1981).
[CrossRef]

IEEE J. Lightwave Technol.

H. Yanagawa, T. Ochiai, H. Hayakawa, H. Miyazawa, “Filter embedded design and its applications to passive components,” IEEE J. Lightwave Technol. 7, 1646–1653 (1989).
[CrossRef]

Jpn. J. Appl. Phys.

S. Misawa, M. Oikawa, K. Iga, “Ray tracing in a distributed-index planar microlens,” Jpn. J. Appl. Phys. 21, L589–L591 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Distributed index profile of the planar microlens formed by (a) the natural diffusion process and (b) the electromigration process.

Fig. 2
Fig. 2

Focusing configuration of the planar microlens: (a) lateral focusing and (b) axial focusing.

Fig. 3
Fig. 3

Fundamental configurations of planar microlens relay optics: (a) coupler of LD and fiber, (b) coupling element to the optical device, and (c) the optical interconnection for wavelength division multiplexing.

Fig. 4
Fig. 4

Ion-exchange process. M+ is an ion to be moved.

Fig. 5
Fig. 5

Lateral focusing characteristics of the planar microlens: (a) locus of the focused light beam and (b) the focusing spot profile.

Fig. 6
Fig. 6

Fringe pattern and measured index distribution: (a) fringe pattern of the microlens cross section, (b) axial index distribution, and (c) lateral index distribution.

Fig. 7
Fig. 7

Ray tracing in the planar microlens sample.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n ( r , z ) 2 = n ( 0 ) 2 { 1 , ( g z ) 2 , ( g z ) 4 , ( g z ) 6 } × [ 1 - 1 1.5 - 1.3 - 1.8 15.4 - 46.6 37.8 10.4 - 127.4 375.8 - 286.2 - 24 298.2 - 859.1 612.4 ] [ 1 ( g r ) 2 ( g r ) 4 ( g r ) 6 ] ,

Metrics