Abstract

For the first time, we believe, the integration of a waveguide lens and a photodetector array in GaAs for operation at a 1.3-μm wavelength is reported. The waveguide lens is a newly devised curved hybrid Fresnel/Bragg chirp grating lens fabricated by the ion-million technique. Desirable performance characteristics, including high throughput efficiency, freedom from coma (up to ±4 deg off axis), and a near-diffraction-limited focal-spot size, have been demonstrated with this curved hybrid lens. The 10-element photodetector array of the InGaAs photoconducting type shows a measured gain–bandwidth product that is higher than 1 GHz at high frequency, while at a lower frequency the gain is in the range of several thousands. The curved-hybrid-lens–photodetector array combination realized in the GaAs 5 × 13 mm2 in size has produced a well-resolved element spacing of 10 μm with cross talk that is lower than −14 dB. This lens–photodetector array combination constitutes a basic structure for the realization of monolithic acousto-optic and electro-optic circuits such as integrated-optic rf spectrum analyzers and multiport switches.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, C. S. Tsai, Guided-Wave Acousto-Optics, Vol. 23 of Electronics and Photonics Series (Springer-Verlag, New York, 1990).
    [CrossRef]
  2. C. C. Lee, K. Y. Liao, C. S. Tsai, “Acousto-optic time-integrating correlator using hybrid integrated optics,” in Proceedings of the IEEE Ultrasonics Symposium, IEEE Catalog 82CH1823-4 (Institute of Electrical and Electronics Engineers, New York, 1982), pp. 405–407.
  3. C. M. Verber, R. P. Kenan, J. R. Busch, “Correlator based on an integrated optical spatial light modulator,” Appl. Opt. 20, 1626–1629 (1981).
    [CrossRef] [PubMed]
  4. C. S. Tsai, D. Y. Zang, P. Le, “High-packing density integrated optic device modules in LiNbO3 for programmable correlation of binary sequences,” Opt. Lett. 14, 889–891 (1989).
    [CrossRef] [PubMed]
  5. C. S. Tsai, P. Le, “A 4 × 4 nonblocking acoustooptic waveguide space switch,” Appl. Phys. Lett. 60, 431–433 (1992); Photonic Switching, Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 67–70.
    [CrossRef]
  6. P. Le, D. Y. Zang, C. S. Tsai, “Integrated electrooptic Bragg modulator modules for matrix–vector and matrix–matrix multiplications,” Appl. Opt. 27, 1780–1785 (1988); A. K. Roy, C. S. Tsai, “A new integrated acoustooptic matrix algebra processor architecture,” Appl. Phys. Lett. 59, 3093–3095 (1991).
    [CrossRef] [PubMed]
  7. T. Q. Vu, J. A. Norris, C. S. Tsai, “Planar waveguide lenses in GaAs by using ion milling,” Appl. Phys. Lett. 54, 1098–1100 (1989); T. Q. Vu, C. S. Tsai, “Ion-milled waveguide lenses and lens-array in GaAs,” IEEE J. Lightwave Technol. 7, 1559–1566 (1989).
    [CrossRef]
  8. C. C. Lee, M. M. Minot, “Low-index guided wave lens in GaAs substrates,” IEEE Photon. Tech. Lett. 1, 313–315 (1989).
    [CrossRef]
  9. Y. Abdelrazek, C. S. Tsai, T. Q. Vu, “An integrated optic rf spectrum analyzer in a ZnO-GaAs-AlGaAs waveguide,” IEEE J. Lightwave Technol. 8, 1833–1837 (1990).
    [CrossRef]
  10. E. Delano, “Primary aberration of menicus Fresnel lenses,” J. Opt. Soc. Am. 66, 1317–1320 (1976).
    [CrossRef]
  11. H. Turk, F. C. Chistie, G. E. Kandel, M. Haliona, “Simulation of waveguide grating lenses in GaAs,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 178–183 (1985).
  12. G. C. Righini, G. Belli, M. Varasi, A. Vannucci, “Waveguide Fresnel lenses for integrated optical processor,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 209–215 (1989).
  13. C. Jagannath, A. Silletti, A. N. M. M. Choudhury, B. Elman, P. McIman, “1.3 μm Monolithically integrated waveguide-interdigitated metal–semiconductor–metal photodetector on a GaAs substrate,” Appl. Phys. Lett. 56, 1892–1894 (1990).
    [CrossRef]
  14. F. Mallecot, J. F. Vinchant, M. Razeghi, D. Vandermoere, J. P. Vilcot, D. Decoster, “Monolithic integration of a short-length GaInAs photoconductor with a GaAs/GaAAs optical waveguide on a GaAs semi-insulating substrate,” Appl. Phys. Lett., 53, 2522–2524 (1988).
    [CrossRef]
  15. A. Antreasyan, W. T. Tsang, “High performance Ga0.47In0.53As photoconductive detectors grown by chemical beam epitaxy,” Appl. Phys. Lett. 49, 322–324 (1986).
    [CrossRef]
  16. K. Iizuka, J.-I. Akasaka, T. Tsubata, H. Hasegawa, “Surface recombination in InGaAs photoconductive detectors and its reduction by a novel passivation scheme using an MBE Si layer,” Inst. Phys. Conf. Ser. 106, 743–748 (1990).
  17. See, for example, S. R. Forrest, “The sensitivity of photoconductor receivers for long-wavelength optical communications,” IEEE J. Lightwave Technol. LT-3, 347–360 (1985); H. Beneking, “Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices,” IEEE Trans. Electron Devices 29, 1420–1431 (1982).
    [CrossRef]
  18. C. S. Tsai, “Guided-wave acoustooptic Bragg modulators for wide-band integrated optic communications and signal processing,” IEEE Trans. Circuits Syst. CAS-26, 1072–1098 (1979).
    [CrossRef]

1992 (1)

C. S. Tsai, P. Le, “A 4 × 4 nonblocking acoustooptic waveguide space switch,” Appl. Phys. Lett. 60, 431–433 (1992); Photonic Switching, Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 67–70.
[CrossRef]

1990 (3)

Y. Abdelrazek, C. S. Tsai, T. Q. Vu, “An integrated optic rf spectrum analyzer in a ZnO-GaAs-AlGaAs waveguide,” IEEE J. Lightwave Technol. 8, 1833–1837 (1990).
[CrossRef]

C. Jagannath, A. Silletti, A. N. M. M. Choudhury, B. Elman, P. McIman, “1.3 μm Monolithically integrated waveguide-interdigitated metal–semiconductor–metal photodetector on a GaAs substrate,” Appl. Phys. Lett. 56, 1892–1894 (1990).
[CrossRef]

K. Iizuka, J.-I. Akasaka, T. Tsubata, H. Hasegawa, “Surface recombination in InGaAs photoconductive detectors and its reduction by a novel passivation scheme using an MBE Si layer,” Inst. Phys. Conf. Ser. 106, 743–748 (1990).

1989 (3)

T. Q. Vu, J. A. Norris, C. S. Tsai, “Planar waveguide lenses in GaAs by using ion milling,” Appl. Phys. Lett. 54, 1098–1100 (1989); T. Q. Vu, C. S. Tsai, “Ion-milled waveguide lenses and lens-array in GaAs,” IEEE J. Lightwave Technol. 7, 1559–1566 (1989).
[CrossRef]

C. C. Lee, M. M. Minot, “Low-index guided wave lens in GaAs substrates,” IEEE Photon. Tech. Lett. 1, 313–315 (1989).
[CrossRef]

C. S. Tsai, D. Y. Zang, P. Le, “High-packing density integrated optic device modules in LiNbO3 for programmable correlation of binary sequences,” Opt. Lett. 14, 889–891 (1989).
[CrossRef] [PubMed]

1988 (2)

P. Le, D. Y. Zang, C. S. Tsai, “Integrated electrooptic Bragg modulator modules for matrix–vector and matrix–matrix multiplications,” Appl. Opt. 27, 1780–1785 (1988); A. K. Roy, C. S. Tsai, “A new integrated acoustooptic matrix algebra processor architecture,” Appl. Phys. Lett. 59, 3093–3095 (1991).
[CrossRef] [PubMed]

F. Mallecot, J. F. Vinchant, M. Razeghi, D. Vandermoere, J. P. Vilcot, D. Decoster, “Monolithic integration of a short-length GaInAs photoconductor with a GaAs/GaAAs optical waveguide on a GaAs semi-insulating substrate,” Appl. Phys. Lett., 53, 2522–2524 (1988).
[CrossRef]

1986 (1)

A. Antreasyan, W. T. Tsang, “High performance Ga0.47In0.53As photoconductive detectors grown by chemical beam epitaxy,” Appl. Phys. Lett. 49, 322–324 (1986).
[CrossRef]

1985 (1)

See, for example, S. R. Forrest, “The sensitivity of photoconductor receivers for long-wavelength optical communications,” IEEE J. Lightwave Technol. LT-3, 347–360 (1985); H. Beneking, “Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices,” IEEE Trans. Electron Devices 29, 1420–1431 (1982).
[CrossRef]

1981 (1)

1979 (1)

C. S. Tsai, “Guided-wave acoustooptic Bragg modulators for wide-band integrated optic communications and signal processing,” IEEE Trans. Circuits Syst. CAS-26, 1072–1098 (1979).
[CrossRef]

1976 (1)

Abdelrazek, Y.

Y. Abdelrazek, C. S. Tsai, T. Q. Vu, “An integrated optic rf spectrum analyzer in a ZnO-GaAs-AlGaAs waveguide,” IEEE J. Lightwave Technol. 8, 1833–1837 (1990).
[CrossRef]

Akasaka, J.-I.

K. Iizuka, J.-I. Akasaka, T. Tsubata, H. Hasegawa, “Surface recombination in InGaAs photoconductive detectors and its reduction by a novel passivation scheme using an MBE Si layer,” Inst. Phys. Conf. Ser. 106, 743–748 (1990).

Antreasyan, A.

A. Antreasyan, W. T. Tsang, “High performance Ga0.47In0.53As photoconductive detectors grown by chemical beam epitaxy,” Appl. Phys. Lett. 49, 322–324 (1986).
[CrossRef]

Belli, G.

G. C. Righini, G. Belli, M. Varasi, A. Vannucci, “Waveguide Fresnel lenses for integrated optical processor,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 209–215 (1989).

Busch, J. R.

Chistie, F. C.

H. Turk, F. C. Chistie, G. E. Kandel, M. Haliona, “Simulation of waveguide grating lenses in GaAs,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 178–183 (1985).

Choudhury, A. N. M. M.

C. Jagannath, A. Silletti, A. N. M. M. Choudhury, B. Elman, P. McIman, “1.3 μm Monolithically integrated waveguide-interdigitated metal–semiconductor–metal photodetector on a GaAs substrate,” Appl. Phys. Lett. 56, 1892–1894 (1990).
[CrossRef]

Decoster, D.

F. Mallecot, J. F. Vinchant, M. Razeghi, D. Vandermoere, J. P. Vilcot, D. Decoster, “Monolithic integration of a short-length GaInAs photoconductor with a GaAs/GaAAs optical waveguide on a GaAs semi-insulating substrate,” Appl. Phys. Lett., 53, 2522–2524 (1988).
[CrossRef]

Delano, E.

Elman, B.

C. Jagannath, A. Silletti, A. N. M. M. Choudhury, B. Elman, P. McIman, “1.3 μm Monolithically integrated waveguide-interdigitated metal–semiconductor–metal photodetector on a GaAs substrate,” Appl. Phys. Lett. 56, 1892–1894 (1990).
[CrossRef]

Forrest, S. R.

See, for example, S. R. Forrest, “The sensitivity of photoconductor receivers for long-wavelength optical communications,” IEEE J. Lightwave Technol. LT-3, 347–360 (1985); H. Beneking, “Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices,” IEEE Trans. Electron Devices 29, 1420–1431 (1982).
[CrossRef]

Haliona, M.

H. Turk, F. C. Chistie, G. E. Kandel, M. Haliona, “Simulation of waveguide grating lenses in GaAs,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 178–183 (1985).

Hasegawa, H.

K. Iizuka, J.-I. Akasaka, T. Tsubata, H. Hasegawa, “Surface recombination in InGaAs photoconductive detectors and its reduction by a novel passivation scheme using an MBE Si layer,” Inst. Phys. Conf. Ser. 106, 743–748 (1990).

Iizuka, K.

K. Iizuka, J.-I. Akasaka, T. Tsubata, H. Hasegawa, “Surface recombination in InGaAs photoconductive detectors and its reduction by a novel passivation scheme using an MBE Si layer,” Inst. Phys. Conf. Ser. 106, 743–748 (1990).

Jagannath, C.

C. Jagannath, A. Silletti, A. N. M. M. Choudhury, B. Elman, P. McIman, “1.3 μm Monolithically integrated waveguide-interdigitated metal–semiconductor–metal photodetector on a GaAs substrate,” Appl. Phys. Lett. 56, 1892–1894 (1990).
[CrossRef]

Kandel, G. E.

H. Turk, F. C. Chistie, G. E. Kandel, M. Haliona, “Simulation of waveguide grating lenses in GaAs,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 178–183 (1985).

Kenan, R. P.

Le, P.

Lee, C. C.

C. C. Lee, M. M. Minot, “Low-index guided wave lens in GaAs substrates,” IEEE Photon. Tech. Lett. 1, 313–315 (1989).
[CrossRef]

C. C. Lee, K. Y. Liao, C. S. Tsai, “Acousto-optic time-integrating correlator using hybrid integrated optics,” in Proceedings of the IEEE Ultrasonics Symposium, IEEE Catalog 82CH1823-4 (Institute of Electrical and Electronics Engineers, New York, 1982), pp. 405–407.

Liao, K. Y.

C. C. Lee, K. Y. Liao, C. S. Tsai, “Acousto-optic time-integrating correlator using hybrid integrated optics,” in Proceedings of the IEEE Ultrasonics Symposium, IEEE Catalog 82CH1823-4 (Institute of Electrical and Electronics Engineers, New York, 1982), pp. 405–407.

Mallecot, F.

F. Mallecot, J. F. Vinchant, M. Razeghi, D. Vandermoere, J. P. Vilcot, D. Decoster, “Monolithic integration of a short-length GaInAs photoconductor with a GaAs/GaAAs optical waveguide on a GaAs semi-insulating substrate,” Appl. Phys. Lett., 53, 2522–2524 (1988).
[CrossRef]

McIman, P.

C. Jagannath, A. Silletti, A. N. M. M. Choudhury, B. Elman, P. McIman, “1.3 μm Monolithically integrated waveguide-interdigitated metal–semiconductor–metal photodetector on a GaAs substrate,” Appl. Phys. Lett. 56, 1892–1894 (1990).
[CrossRef]

Minot, M. M.

C. C. Lee, M. M. Minot, “Low-index guided wave lens in GaAs substrates,” IEEE Photon. Tech. Lett. 1, 313–315 (1989).
[CrossRef]

Norris, J. A.

T. Q. Vu, J. A. Norris, C. S. Tsai, “Planar waveguide lenses in GaAs by using ion milling,” Appl. Phys. Lett. 54, 1098–1100 (1989); T. Q. Vu, C. S. Tsai, “Ion-milled waveguide lenses and lens-array in GaAs,” IEEE J. Lightwave Technol. 7, 1559–1566 (1989).
[CrossRef]

Razeghi, M.

F. Mallecot, J. F. Vinchant, M. Razeghi, D. Vandermoere, J. P. Vilcot, D. Decoster, “Monolithic integration of a short-length GaInAs photoconductor with a GaAs/GaAAs optical waveguide on a GaAs semi-insulating substrate,” Appl. Phys. Lett., 53, 2522–2524 (1988).
[CrossRef]

Righini, G. C.

G. C. Righini, G. Belli, M. Varasi, A. Vannucci, “Waveguide Fresnel lenses for integrated optical processor,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 209–215 (1989).

Silletti, A.

C. Jagannath, A. Silletti, A. N. M. M. Choudhury, B. Elman, P. McIman, “1.3 μm Monolithically integrated waveguide-interdigitated metal–semiconductor–metal photodetector on a GaAs substrate,” Appl. Phys. Lett. 56, 1892–1894 (1990).
[CrossRef]

Tsai, C. S.

C. S. Tsai, P. Le, “A 4 × 4 nonblocking acoustooptic waveguide space switch,” Appl. Phys. Lett. 60, 431–433 (1992); Photonic Switching, Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 67–70.
[CrossRef]

Y. Abdelrazek, C. S. Tsai, T. Q. Vu, “An integrated optic rf spectrum analyzer in a ZnO-GaAs-AlGaAs waveguide,” IEEE J. Lightwave Technol. 8, 1833–1837 (1990).
[CrossRef]

T. Q. Vu, J. A. Norris, C. S. Tsai, “Planar waveguide lenses in GaAs by using ion milling,” Appl. Phys. Lett. 54, 1098–1100 (1989); T. Q. Vu, C. S. Tsai, “Ion-milled waveguide lenses and lens-array in GaAs,” IEEE J. Lightwave Technol. 7, 1559–1566 (1989).
[CrossRef]

C. S. Tsai, D. Y. Zang, P. Le, “High-packing density integrated optic device modules in LiNbO3 for programmable correlation of binary sequences,” Opt. Lett. 14, 889–891 (1989).
[CrossRef] [PubMed]

P. Le, D. Y. Zang, C. S. Tsai, “Integrated electrooptic Bragg modulator modules for matrix–vector and matrix–matrix multiplications,” Appl. Opt. 27, 1780–1785 (1988); A. K. Roy, C. S. Tsai, “A new integrated acoustooptic matrix algebra processor architecture,” Appl. Phys. Lett. 59, 3093–3095 (1991).
[CrossRef] [PubMed]

C. S. Tsai, “Guided-wave acoustooptic Bragg modulators for wide-band integrated optic communications and signal processing,” IEEE Trans. Circuits Syst. CAS-26, 1072–1098 (1979).
[CrossRef]

See, for example, C. S. Tsai, Guided-Wave Acousto-Optics, Vol. 23 of Electronics and Photonics Series (Springer-Verlag, New York, 1990).
[CrossRef]

C. C. Lee, K. Y. Liao, C. S. Tsai, “Acousto-optic time-integrating correlator using hybrid integrated optics,” in Proceedings of the IEEE Ultrasonics Symposium, IEEE Catalog 82CH1823-4 (Institute of Electrical and Electronics Engineers, New York, 1982), pp. 405–407.

Tsang, W. T.

A. Antreasyan, W. T. Tsang, “High performance Ga0.47In0.53As photoconductive detectors grown by chemical beam epitaxy,” Appl. Phys. Lett. 49, 322–324 (1986).
[CrossRef]

Tsubata, T.

K. Iizuka, J.-I. Akasaka, T. Tsubata, H. Hasegawa, “Surface recombination in InGaAs photoconductive detectors and its reduction by a novel passivation scheme using an MBE Si layer,” Inst. Phys. Conf. Ser. 106, 743–748 (1990).

Turk, H.

H. Turk, F. C. Chistie, G. E. Kandel, M. Haliona, “Simulation of waveguide grating lenses in GaAs,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 178–183 (1985).

Vandermoere, D.

F. Mallecot, J. F. Vinchant, M. Razeghi, D. Vandermoere, J. P. Vilcot, D. Decoster, “Monolithic integration of a short-length GaInAs photoconductor with a GaAs/GaAAs optical waveguide on a GaAs semi-insulating substrate,” Appl. Phys. Lett., 53, 2522–2524 (1988).
[CrossRef]

Vannucci, A.

G. C. Righini, G. Belli, M. Varasi, A. Vannucci, “Waveguide Fresnel lenses for integrated optical processor,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 209–215 (1989).

Varasi, M.

G. C. Righini, G. Belli, M. Varasi, A. Vannucci, “Waveguide Fresnel lenses for integrated optical processor,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 209–215 (1989).

Verber, C. M.

Vilcot, J. P.

F. Mallecot, J. F. Vinchant, M. Razeghi, D. Vandermoere, J. P. Vilcot, D. Decoster, “Monolithic integration of a short-length GaInAs photoconductor with a GaAs/GaAAs optical waveguide on a GaAs semi-insulating substrate,” Appl. Phys. Lett., 53, 2522–2524 (1988).
[CrossRef]

Vinchant, J. F.

F. Mallecot, J. F. Vinchant, M. Razeghi, D. Vandermoere, J. P. Vilcot, D. Decoster, “Monolithic integration of a short-length GaInAs photoconductor with a GaAs/GaAAs optical waveguide on a GaAs semi-insulating substrate,” Appl. Phys. Lett., 53, 2522–2524 (1988).
[CrossRef]

Vu, T. Q.

Y. Abdelrazek, C. S. Tsai, T. Q. Vu, “An integrated optic rf spectrum analyzer in a ZnO-GaAs-AlGaAs waveguide,” IEEE J. Lightwave Technol. 8, 1833–1837 (1990).
[CrossRef]

T. Q. Vu, J. A. Norris, C. S. Tsai, “Planar waveguide lenses in GaAs by using ion milling,” Appl. Phys. Lett. 54, 1098–1100 (1989); T. Q. Vu, C. S. Tsai, “Ion-milled waveguide lenses and lens-array in GaAs,” IEEE J. Lightwave Technol. 7, 1559–1566 (1989).
[CrossRef]

Zang, D. Y.

Appl. Opt. (2)

Appl. Phys. Lett. (5)

T. Q. Vu, J. A. Norris, C. S. Tsai, “Planar waveguide lenses in GaAs by using ion milling,” Appl. Phys. Lett. 54, 1098–1100 (1989); T. Q. Vu, C. S. Tsai, “Ion-milled waveguide lenses and lens-array in GaAs,” IEEE J. Lightwave Technol. 7, 1559–1566 (1989).
[CrossRef]

C. Jagannath, A. Silletti, A. N. M. M. Choudhury, B. Elman, P. McIman, “1.3 μm Monolithically integrated waveguide-interdigitated metal–semiconductor–metal photodetector on a GaAs substrate,” Appl. Phys. Lett. 56, 1892–1894 (1990).
[CrossRef]

F. Mallecot, J. F. Vinchant, M. Razeghi, D. Vandermoere, J. P. Vilcot, D. Decoster, “Monolithic integration of a short-length GaInAs photoconductor with a GaAs/GaAAs optical waveguide on a GaAs semi-insulating substrate,” Appl. Phys. Lett., 53, 2522–2524 (1988).
[CrossRef]

A. Antreasyan, W. T. Tsang, “High performance Ga0.47In0.53As photoconductive detectors grown by chemical beam epitaxy,” Appl. Phys. Lett. 49, 322–324 (1986).
[CrossRef]

C. S. Tsai, P. Le, “A 4 × 4 nonblocking acoustooptic waveguide space switch,” Appl. Phys. Lett. 60, 431–433 (1992); Photonic Switching, Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 67–70.
[CrossRef]

IEEE J. Lightwave Technol. (2)

See, for example, S. R. Forrest, “The sensitivity of photoconductor receivers for long-wavelength optical communications,” IEEE J. Lightwave Technol. LT-3, 347–360 (1985); H. Beneking, “Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices,” IEEE Trans. Electron Devices 29, 1420–1431 (1982).
[CrossRef]

Y. Abdelrazek, C. S. Tsai, T. Q. Vu, “An integrated optic rf spectrum analyzer in a ZnO-GaAs-AlGaAs waveguide,” IEEE J. Lightwave Technol. 8, 1833–1837 (1990).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

C. C. Lee, M. M. Minot, “Low-index guided wave lens in GaAs substrates,” IEEE Photon. Tech. Lett. 1, 313–315 (1989).
[CrossRef]

IEEE Trans. Circuits Syst. (1)

C. S. Tsai, “Guided-wave acoustooptic Bragg modulators for wide-band integrated optic communications and signal processing,” IEEE Trans. Circuits Syst. CAS-26, 1072–1098 (1979).
[CrossRef]

Inst. Phys. Conf. Ser. (1)

K. Iizuka, J.-I. Akasaka, T. Tsubata, H. Hasegawa, “Surface recombination in InGaAs photoconductive detectors and its reduction by a novel passivation scheme using an MBE Si layer,” Inst. Phys. Conf. Ser. 106, 743–748 (1990).

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Other (4)

See, for example, C. S. Tsai, Guided-Wave Acousto-Optics, Vol. 23 of Electronics and Photonics Series (Springer-Verlag, New York, 1990).
[CrossRef]

C. C. Lee, K. Y. Liao, C. S. Tsai, “Acousto-optic time-integrating correlator using hybrid integrated optics,” in Proceedings of the IEEE Ultrasonics Symposium, IEEE Catalog 82CH1823-4 (Institute of Electrical and Electronics Engineers, New York, 1982), pp. 405–407.

H. Turk, F. C. Chistie, G. E. Kandel, M. Haliona, “Simulation of waveguide grating lenses in GaAs,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 178–183 (1985).

G. C. Righini, G. Belli, M. Varasi, A. Vannucci, “Waveguide Fresnel lenses for integrated optical processor,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 209–215 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Ion-milled curved-hybrid lens in a GaAs waveguide: A, lens aperture; F, focal length.

Fig. 2
Fig. 2

Actual flat (upper) and curved (lower) hybrid lenses.

Fig. 3
Fig. 3

Focal-spot profile of flat and curved hybrid lenses: (a) flat hybrid lens (on axis), (b) flat hybrid lens (4° off axis), (c) curved hybrid lens (on axis), (c) curved hybrid lens (4° off axis).

Fig. 4
Fig. 4

Detailed structure (a) and photograph (b) of the 10-element InGaAs photodetector array.

Fig. 5
Fig. 5

Measured photocurrent versus the bias electric field.

Fig. 6
Fig. 6

Measured photoresponse under normal incidence of light with a 1-kflz square wave modulation.

Fig. 7
Fig. 7

Frequency photoresponse to (a) square-wave- and (b) square-pulse modulated light.

Fig. 8
Fig. 8

Photocurrent wave forms with modulated light of (a) 1-ms pulse width and (b) 10-μs pulse width.

Fig. 9
Fig. 9

High-frequency photoresponse to sinusoidal-wave modulated light.

Fig. 10
Fig. 10

Photocurrent wave form produced with 300-MHz modulated light. Upper trace: photocurrent loaded through a 1-kΩ resistor. Lower trace: modulating light.

Fig. 11
Fig. 11

InGaAs photodetector array and lens combination in a GaAs waveguide.

Fig. 12
Fig. 12

Photoresponse of the photodetector array when illuminated onto a single element (5): (a) photocurrent generated; (b) optical power absorbed.

Fig. 13
Fig. 13

IOSA module in a GaAs waveguide.

Tables (1)

Tables Icon

Table 1 Design Parameters and Measured Performances of Flat Hybrid and Curved Hybrid Lenses in GaAs

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

g ( z ) = z 2 2 F ,
ϕ ( z ) = k n e ( F - g ( z ) - { z 2 + [ F - g ( z ) ] 2 } 1 / 2 ) ,
L f ( z ) = λ 0 Δ n e [ - 1 2 π ϕ ( z ) mod ( 2 π ) ] ,
z m = { [ ( m λ 0 n e + F ) 2 - F 2 ] F ( m λ 0 n e + F ) } 1 / 2 ,             m = 0 , ± 1 , ± 2 ,
d m = z ( m + 1 / 4 ) - z ( m - 1 / 4 ) ,
θ m = 1 2 arctan [ z m F - g ( z ) ] .
L g = λ 0 2 Δ n e .
Q 2 π λ 0 L g n e Λ 2 ,
Λ 2 λ 0 F n e z .
η = { 64 π 2 n e 2 - n e Δ n e ( 2 n e - Δ n e ) 2 cos 2 ( π 2 t - Δ t t ) × ( 1 - Δ t / t ) [ 1 - ( 1 - Δ t / t ) 2 ] 2 cos 2 ( π Δ t 2 t ) } 2 ,
δ f = V a S n e F λ 0 .

Metrics