Abstract

A reading head empolying a double grating in a monomode waveguide for the interferometric readout of grating scales is proposed and demonstrated. A theoretical analysis employing a ray-tracing program that includes wave-front data output shows promising insensitivity to deviations from the design data for this device. Experimental results for a laboratory setup are presented.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
    [CrossRef]
  2. T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram intergration,” Opt. Commun. 19, 353–358 (1976).
    [CrossRef]
  3. S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” IEEE Lightwave Technol. 7, 270–273 (1989).
    [CrossRef]
  4. A. Reule, Program GIKO02, Carl Zeiss Internal Rep. WO-FLab LB 90-3 (Carl Zeiss, Oberkochen, Germany, 1990).
  5. IOT, Entwicklungsgescellschaft für Integrierte Optik Technologie mbH, Bruchsaler Strasse. 22, D-6833 Waghdäusel-Kirrlach, Germany.

1989 (1)

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” IEEE Lightwave Technol. 7, 270–273 (1989).
[CrossRef]

1976 (1)

T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram intergration,” Opt. Commun. 19, 353–358 (1976).
[CrossRef]

1970 (1)

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Koyama, J.

T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram intergration,” Opt. Commun. 19, 353–358 (1976).
[CrossRef]

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Nishihara, H.

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” IEEE Lightwave Technol. 7, 270–273 (1989).
[CrossRef]

T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram intergration,” Opt. Commun. 19, 353–358 (1976).
[CrossRef]

Reule, A.

A. Reule, Program GIKO02, Carl Zeiss Internal Rep. WO-FLab LB 90-3 (Carl Zeiss, Oberkochen, Germany, 1990).

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Suhara, T.

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” IEEE Lightwave Technol. 7, 270–273 (1989).
[CrossRef]

T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram intergration,” Opt. Commun. 19, 353–358 (1976).
[CrossRef]

Ura, S.

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” IEEE Lightwave Technol. 7, 270–273 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

IEEE Lightwave Technol. (1)

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” IEEE Lightwave Technol. 7, 270–273 (1989).
[CrossRef]

Opt. Commun. (1)

T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram intergration,” Opt. Commun. 19, 353–358 (1976).
[CrossRef]

Other (2)

A. Reule, Program GIKO02, Carl Zeiss Internal Rep. WO-FLab LB 90-3 (Carl Zeiss, Oberkochen, Germany, 1990).

IOT, Entwicklungsgescellschaft für Integrierte Optik Technologie mbH, Bruchsaler Strasse. 22, D-6833 Waghdäusel-Kirrlach, Germany.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principal setup of the integrated optical readout chip. The coordinates correspond to the formulas given in the text. The origin is at the design position of the laser source point.

Fig. 2
Fig. 2

Different readout setups employing the IORH: (a) For transmission scales. (b) For reflection scales. (c) Same as (b) but with improved background discrimination owing to an additional grating coupler on the substrate back surface; rhc reading head chip.

Fig. 3
Fig. 3

Wave-front deviation from parallelism after diffraction at the grating scale for the worst-case situation (see the text for details). The coordinates x and y correspond to Fig. 1, but the origin has been shifted to the grating center. The contour line separation is 10 nm.

Fig. 4
Fig. 4

Wave-front deviation of one of the two beams in Fig. 3 from its ideal behavior in the same case. The contour line separation is 1 μm.

Fig. 5
Fig. 5

Same as in Fig. 4 except for a correction in the tilt and offset. The contour line spacing is again 10 nm.

Fig. 6
Fig. 6

Beams coupled out from the IORH. The angular separation between the two beams is ~ 6°.

Fig. 7
Fig. 7

Piezo drive voltage (lower trace) corresponding linearly to the grating movement and interferometric readout signal (upper trace). For details see the text.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N ( x , z ) = [ n eff ( x 2 + z 2 ) 1 / 2 + sin α · x ] / λ + C ,
N ( x , y ) = n eff ( x 2 + z 2 ) 1 / 2 / λ + C
N ( r ) = n eff r / λ

Metrics