Abstract

A new fiber pigtailed optical receiver design using a single gradient-index rod lens with a beveled exit face achieved a broadband optical return loss of >65 dB, which was limited by the diffuse reflection from the photodetector front surface. By contrast the optical return loss for a receiver with an unbeveled lens exit face and an on-axis optical path was limited to a smaller value by the specular reflection from the lens exit face.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
    [CrossRef]
  2. R. W. Tkach, A. R. Chraplyvy, “Linewidth broadening and mode spliting due to weak feedback in single-frequency 1.5 μm lasers,” Electron. Lett. 21, 1081–1083 (1985).
    [CrossRef]
  3. D. Marcuse, “Reflection losses from imperfectly broken fiber ends,” Appl. Opt. 14, 3016–3020 (1975).
    [CrossRef] [PubMed]
  4. R. Ulrich, S. C. Rashleigh, “Beam-to-fiber coupling with low standing wave ratio,” Appl. Opt. 19, 2453–2456 (1980).
    [CrossRef] [PubMed]
  5. G. von Bally, W. Schmidthaus, H. Sakowski, W. Mette, “Gradient-index optical systems in holographic endoscopy,” Appl. Opt. 23, 1725–1729 (1984).
    [CrossRef] [PubMed]
  6. Nippon Sheet Glass Company, Ltd., Tokyo, Japan.
  7. Selfoc is a registered trade name of the Nippon Sheet Glass Company, Ltd., Tokyo, Japan.
  8. D. M. Braun, “Design of single layer antireflection coatings for InP/In0.53Ga0.47As/InP photodetectors for the 1200–1600-nm wavelength range,” Appl. Opt. 27, 2006–2011 (1988).
    [CrossRef] [PubMed]
  9. D. M. Braun, K. W. Leyde, “Optical reflection measurement system using a swept modulation frequency technique,” Opt. Eng. 28, 286–289 (1989).
  10. J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-waveguide-mounted InGaAs photodetectors,” Electron. Lett. 22, 633–635 (1986)
    [CrossRef]
  11. R. C. Youngquist, S. Carr, D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
    [CrossRef] [PubMed]
  12. K. Takada, I. Yokohama, K. Chida, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603–1606 (1987).
    [CrossRef] [PubMed]
  13. B. L. Danielson, C. D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt. 26, 2836–2842 (1987).
    [CrossRef] [PubMed]

1989 (1)

D. M. Braun, K. W. Leyde, “Optical reflection measurement system using a swept modulation frequency technique,” Opt. Eng. 28, 286–289 (1989).

1988 (1)

1987 (3)

1986 (1)

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-waveguide-mounted InGaAs photodetectors,” Electron. Lett. 22, 633–635 (1986)
[CrossRef]

1985 (1)

R. W. Tkach, A. R. Chraplyvy, “Linewidth broadening and mode spliting due to weak feedback in single-frequency 1.5 μm lasers,” Electron. Lett. 21, 1081–1083 (1985).
[CrossRef]

1984 (1)

1980 (1)

1975 (1)

Agrawal, G. P.

G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Bowers, J. E.

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-waveguide-mounted InGaAs photodetectors,” Electron. Lett. 22, 633–635 (1986)
[CrossRef]

Braun, D. M.

D. M. Braun, K. W. Leyde, “Optical reflection measurement system using a swept modulation frequency technique,” Opt. Eng. 28, 286–289 (1989).

D. M. Braun, “Design of single layer antireflection coatings for InP/In0.53Ga0.47As/InP photodetectors for the 1200–1600-nm wavelength range,” Appl. Opt. 27, 2006–2011 (1988).
[CrossRef] [PubMed]

Burrus, C. A.

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-waveguide-mounted InGaAs photodetectors,” Electron. Lett. 22, 633–635 (1986)
[CrossRef]

Carr, S.

Chida, K.

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, “Linewidth broadening and mode spliting due to weak feedback in single-frequency 1.5 μm lasers,” Electron. Lett. 21, 1081–1083 (1985).
[CrossRef]

Danielson, B. L.

Davies, D. E. N.

Dutta, N. K.

G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Leyde, K. W.

D. M. Braun, K. W. Leyde, “Optical reflection measurement system using a swept modulation frequency technique,” Opt. Eng. 28, 286–289 (1989).

Marcuse, D.

Mette, W.

Mitschke, F.

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-waveguide-mounted InGaAs photodetectors,” Electron. Lett. 22, 633–635 (1986)
[CrossRef]

Noda, J.

Rashleigh, S. C.

Sakowski, H.

Schmidthaus, W.

Takada, K.

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, “Linewidth broadening and mode spliting due to weak feedback in single-frequency 1.5 μm lasers,” Electron. Lett. 21, 1081–1083 (1985).
[CrossRef]

Ulrich, R.

von Bally, G.

Whittenberg, C. D.

Yokohama, I.

Youngquist, R. C.

Appl. Opt. (6)

Electron. Lett. (2)

J. E. Bowers, C. A. Burrus, F. Mitschke, “Millimetre-waveguide-mounted InGaAs photodetectors,” Electron. Lett. 22, 633–635 (1986)
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, “Linewidth broadening and mode spliting due to weak feedback in single-frequency 1.5 μm lasers,” Electron. Lett. 21, 1081–1083 (1985).
[CrossRef]

Opt. Eng. (1)

D. M. Braun, K. W. Leyde, “Optical reflection measurement system using a swept modulation frequency technique,” Opt. Eng. 28, 286–289 (1989).

Opt. Lett. (1)

Other (3)

G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Nippon Sheet Glass Company, Ltd., Tokyo, Japan.

Selfoc is a registered trade name of the Nippon Sheet Glass Company, Ltd., Tokyo, Japan.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Receiver cross section illustrating the design parameters. Lens exit face design C is shown.

Fig. 2
Fig. 2

Optical cw reflection measurement system block diagram.

Fig. 3
Fig. 3

Packaged receiver for design C. The receiver is fiber pigtailed and has a dc bias pin and a 20-GHz rf port.

Fig. 4
Fig. 4

Optical coherence-domain reflectometry measurement system block diagram. The system uses a Michelson interferometer and broadband optical source centered at either λ = 1300 nm or λ = 1550 nm. When the time delay from the translating mirror and from an interface reflection within the receiver to the coupler are equal, an interference pattern is measured by the detector. The strength of the interference pattern gives the receiver interface reflectance, and the mirror position gives the interface location. LED is a light-emitting diode, and PZT is a piezoelectric transducer.

Fig. 5
Fig. 5

Measured reflectance at λ = 1300 nm versus relative distance along the optical path for the packaged receiver built by using lens design C.

Fig. 6
Fig. 6

Measured reflectance at λ = 1550 nm versus relative distance along the optical path for the packaged receiver built by using lens design C.

Tables (2)

Tables Icon

Table I Optical Return Loss of Receivers with Lens Designs A–E

Tables Icon

Table II Calculated AR Coating Reflectance

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

loss = ORL E + 20 log ( n 0 - 1 n 0 + 1 )             ( dB ) ,
R = 10 - ( ORL m - loss ) / 10 ,
S = ± 1 2 [ 10 log ( I min I max ) ]             ( dB ) ,

Metrics