Abstract

A generalized beam propagation method is described that uses the ABCD matrices to treat optical systems that have modest amounts of aberrations including gradient refractive-index elements. We can make calculations from any point in the near or far field to any other point by using appropriate numerical algorithms. The variation of the reduced length is discussed as a limitation to accuracy. The diffraction properties of a complex stigmatic system may be represented by those of an equivalent elementary system. This facilitates calculations using the standard diffraction operations for homogeneous media. The modified propagation technique replaces the large number of diffraction steps commonly used for the split-step solution of inhomogeneous media with one step for stigmatic media and in general no more than a few steps for aberrated media. Maxwell’s fisheye lens is discussed in detail to show application of the method.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (56)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription