Abstract

The coupling characteristics of optical-fiber connectors using gradient-index (GRIN)-rod lenses are analyzed for both single-mode and multimode use. We deal with six types of commercially available GRIN-rod lens. In the single-mode case the coupling characteristics are analyzed by the Gaussian beam approximation, and the effects of the deviation in lens length from a one-quarter pitch, the lens separation, and the lateral shift of the lens are clarified. In the multimode case the coupling characteristics are analyzed by the ray-trace method, and the effect of the third-order aberration of the GRIN-rod lens is clarified in addition to those in the single-mode case. In both cases a type SLS 2.0-mm lens is found to be best. By adjusting the lens length to be slightly longer than a one-quarter pitch, the lens separation and the tolerance for the lateral shift of the lens were improved.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Optical fiber collimator,” in Optical Fiber Products Catalog (Nippon Sheet Glass Company).
  2. R. Kishimoto, “Design for a single-mode optical fiber switch,” Trans. Inst. Electron. Commun. Eng. Jpn. J68-C, 1024–1032 (1985).
  3. T. Sakamoto, “Coupling loss analysis on a multimode fiber directional coupler using GRIN-rod lenses,” Appl. Opt. 25, 2620–2625 (1986).
    [CrossRef] [PubMed]
  4. T. Sakamoto, “Estimation of the fourth-order index coefficient of GRIN-rod lenses,” Appl. Opt. 25, 2613–2619 (1986).
    [CrossRef] [PubMed]
  5. M. Saruwatari, K. Nawata, “Semiconductor laser to single-mode fiber coupler,” Appl. Opt. 18, 1837–1856 (1979).
    [CrossRef]
  6. T. W. Cline, R. B. Jander, “Wavefront aberration measurements on GRIN-rod lenses,” Appl. Opt. 21, 1035–1041 (1982).
    [CrossRef] [PubMed]

1986

1985

R. Kishimoto, “Design for a single-mode optical fiber switch,” Trans. Inst. Electron. Commun. Eng. Jpn. J68-C, 1024–1032 (1985).

1982

1979

M. Saruwatari, K. Nawata, “Semiconductor laser to single-mode fiber coupler,” Appl. Opt. 18, 1837–1856 (1979).
[CrossRef]

Cline, T. W.

Jander, R. B.

Kishimoto, R.

R. Kishimoto, “Design for a single-mode optical fiber switch,” Trans. Inst. Electron. Commun. Eng. Jpn. J68-C, 1024–1032 (1985).

Nawata, K.

M. Saruwatari, K. Nawata, “Semiconductor laser to single-mode fiber coupler,” Appl. Opt. 18, 1837–1856 (1979).
[CrossRef]

Sakamoto, T.

Saruwatari, M.

M. Saruwatari, K. Nawata, “Semiconductor laser to single-mode fiber coupler,” Appl. Opt. 18, 1837–1856 (1979).
[CrossRef]

Appl. Opt.

Trans. Inst. Electron. Commun. Eng. Jpn.

R. Kishimoto, “Design for a single-mode optical fiber switch,” Trans. Inst. Electron. Commun. Eng. Jpn. J68-C, 1024–1032 (1985).

Other

“Optical fiber collimator,” in Optical Fiber Products Catalog (Nippon Sheet Glass Company).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the optical-fiber connector using a pair of one-quarter-pitch GRIN-rod lenses.

Fig. 2
Fig. 2

Gaussian beam parameters in the single-mode optical fiber collimator using a one-quarter-pitch GRIN-rod lens.

Fig. 3
Fig. 3

Fundamental coupling characteristics of the single-mode optical-fiber connectors with ΔZ = 0 and Δx = 0.

Fig. 4
Fig. 4

Contour map of coupling loss dependence on ΔZ and d of the single-mode optical-fiber connectors with Δx = 0: (a) SLS 1.0, (b) SLW 2.0, (c) SLS 1.0, (d) SLW 1.8, (e) SLH 1.8, (f) SLW 1.0

Fig. 5
Fig. 5

Contour map of the coupling loss dependence on Δx and d of the single-mode optical-fiber connectors with ΔZ = 0: (a) SLS 2.0, (b) SLW 2.0, (c) SLS 1.0, (d) SLW1.8, (e) SLH 1.8, (f) SLW 1.0.

Fig. 6
Fig. 6

Fundamental coupling characteristics of the multimode optical-fiber connectors with ΔZ = 0 and Δx = 0. The width of these curves represents the influence of h4.

Fig. 7
Fig. 7

Coupling loss dependence on ΔZ and d of the multimode optical-fiber connectors with Δx = 0: (a) SLS 2.0, (b) SLW 2.0, (c) SLS 1.0, (d) SLW 1.8, (e) SLH 1.8, (f) SLW 1.0. The width of these curves represents the influence of h4.

Fig. 8
Fig. 8

Contour map of the coupling loss dependence on Δx and d of the multimode optical-fiber connector using an SLS 2.0-mm lens with ΔZ = 100 μm. The widths of these curves represent the influence of h4.

Tables (3)

Tables Icon

Table 1 Parameters of Optical Fibers

Tables Icon

Table 2 Parameters of GRIN-Rod Lenses at 0.83 μm

Tables Icon

Table 3 Extrapolated and Measured6 Third-Order Wave-Front Spherical Aberration of SLS 2.0-mm and SLW 1.8-mm Lenses

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( r ) = n 0 2 [ 1 - ( g r ) 2 + h 4 ( g r ) 4 + ] ,
g x ( z ) = g x i cos g z + cos γ x sin g z ,
g y ( z ) = g y i cos g z + cos γ y sin g z ,
( - n 0 g d - g Δ Z 1 n 0 g - d g Δ Z - n 0 g - g Δ Z ) ,
g w g 0 = g λ π n 0 g w 0 ( 1 - n 0 g d g Δ Z ) ,
d g = - Δ Z n 0 ( 1 - λ π n 0 g w g 0 2 ) .
η = - 10 log 10 { κ exp [ - κ Δ x 2 2 ( 1 w g 2 + 1 w g 0 2 ) ] } ,
κ = 4 π 2 w g 2 w g 0 2 π 2 ( w g 2 + w g 0 2 ) 2 + λ 2 ( d - 2 d g ) 2 , w g 2 = w g 0 2 [ 1 + λ 2 ( d - 2 d g ) 2 π 2 w g 0 4 ] ,
η = - 10 log 10 N received N launched ,

Metrics