Abstract

We have measured the transmittance of 3-kW CO2 laser light through Ge-coated Ag hollow waveguides. The basic characteristics such as transmissivity, bending loss, and output-beam properties are described. A maximum laser power of 2.6 kW was delivered through a straight hollow waveguide that was 1.7 mm in diameter and 2 m long. Furthermore, 4-m-long waveguides were fabricated by joining two waveguides.

Finally, preliminary experiments on welding steel plates were done with the light transmitted through the waveguide. Although the focusing properties of the output beam should be improved for practical laser processing, this type of waveguide is promising for high-power CO2 laser-light transmission.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Katsuyama, H. Matsumura, Infrared Optical Fibers (Hilger, Philadelphia, Pa., 1989).
  2. M. Miyagi, A. Hongo, Y. Matsuura, “Hollow IR waveguides,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 26–35 (1990).
  3. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [CrossRef] [PubMed]
  4. J. A. Harrington, C. C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
    [CrossRef] [PubMed]
  5. M. Saito, M. Takizawa, S. Sakuragi, F. Tanei, “Infrared image guide with bundled As-S glass fibers,” Appl. Opt. 24, 2304–2308 (1985).
    [CrossRef] [PubMed]
  6. H. Ishiwatari, M. Ikedo, F. Tateishi, “An optical cable for a CO2 laser scalpel,” IEEE J. Lightwave Technol. LT-4, 1273–1279 (1986).
    [CrossRef]
  7. A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1-kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
    [CrossRef]
  8. M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
    [CrossRef]
  9. A. Hongo, K. Morosawa, T. Shiota, Y. Matuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
    [CrossRef]
  10. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  11. A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).
    [CrossRef]
  12. E. Garmire, T. McMahon, M. Bass, “Propagation of infrared light in flexible hollow waveguides,” Appl. Opt. 15, 145–150 (1976).
    [CrossRef] [PubMed]
  13. M. E. Marhic, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981).
    [CrossRef]
  14. M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
    [CrossRef]
  15. Y. Matuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
    [CrossRef]
  16. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]

1991 (1)

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1-kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

1990 (4)

A. Hongo, K. Morosawa, T. Shiota, Y. Matuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

J. A. Harrington, C. C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
[CrossRef] [PubMed]

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

1986 (1)

H. Ishiwatari, M. Ikedo, F. Tateishi, “An optical cable for a CO2 laser scalpel,” IEEE J. Lightwave Technol. LT-4, 1273–1279 (1986).
[CrossRef]

1985 (1)

1984 (2)

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1983 (1)

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

1981 (1)

M. E. Marhic, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981).
[CrossRef]

1976 (1)

Aizawa, Y.

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Bass, M.

Croitoru, N.

Dror, J.

Gannot, I.

Garmire, E.

M. E. Marhic, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981).
[CrossRef]

E. Garmire, T. McMahon, M. Bass, “Propagation of infrared light in flexible hollow waveguides,” Appl. Opt. 15, 145–150 (1976).
[CrossRef] [PubMed]

Gregory, C. C.

Harada, K.

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

Harrington, J. A.

Hongo, A.

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1-kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

M. Miyagi, A. Hongo, Y. Matsuura, “Hollow IR waveguides,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 26–35 (1990).

Ikedo, M.

H. Ishiwatari, M. Ikedo, F. Tateishi, “An optical cable for a CO2 laser scalpel,” IEEE J. Lightwave Technol. LT-4, 1273–1279 (1986).
[CrossRef]

Ishiwatari, H.

H. Ishiwatari, M. Ikedo, F. Tateishi, “An optical cable for a CO2 laser scalpel,” IEEE J. Lightwave Technol. LT-4, 1273–1279 (1986).
[CrossRef]

Iwasaki, S.

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1-kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

Karasawa, S.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Katsuyama, T.

T. Katsuyama, H. Matsumura, Infrared Optical Fibers (Hilger, Philadelphia, Pa., 1989).

Kawakami, S.

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Marhic, M. E.

M. E. Marhic, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981).
[CrossRef]

Matsumura, H.

T. Katsuyama, H. Matsumura, Infrared Optical Fibers (Hilger, Philadelphia, Pa., 1989).

Matsuura, Y.

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, A. Hongo, Y. Matsuura, “Hollow IR waveguides,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 26–35 (1990).

Matuura, Y.

Y. Matuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

McMahon, T.

Miyagi, M.

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1-kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

M. Miyagi, A. Hongo, Y. Matsuura, “Hollow IR waveguides,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 26–35 (1990).

Morosawa, K.

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1-kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Nishida, S.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Saito, M.

Sakamoto, K.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Sakuragi, S.

Shiota, T.

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1-kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Suzuki, K.

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1-kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

Takizawa, M.

Tanei, F.

Tateishi, F.

H. Ishiwatari, M. Ikedo, F. Tateishi, “An optical cable for a CO2 laser scalpel,” IEEE J. Lightwave Technol. LT-4, 1273–1279 (1986).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1-kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

M. E. Marhic, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981).
[CrossRef]

IEEE J. Lightwave Technol. (2)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

H. Ishiwatari, M. Ikedo, F. Tateishi, “An optical cable for a CO2 laser scalpel,” IEEE J. Lightwave Technol. LT-4, 1273–1279 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Hongo, K. Morosawa, T. Shiota, Y. Matuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Laser Technol. (2)

Y. Matuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Opt. Lett. (1)

Other (2)

T. Katsuyama, H. Matsumura, Infrared Optical Fibers (Hilger, Philadelphia, Pa., 1989).

M. Miyagi, A. Hongo, Y. Matsuura, “Hollow IR waveguides,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 26–35 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Structure of the hollow waveguide and its armor.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Beam patterns of a laser beam observed 475 cm from the output mirror of the laser source, incident on an acrylic block for 3s.

Fig. 4
Fig. 4

Relationship between the input and output powers under straight conditions. The focal distance of the incident lens was 38.1 cm.

Fig. 5
Fig. 5

Beam patterns of the output beam from the waveguide: (a) 1.5-mm ϕ waveguide (output power of 2.1 kW) and (b) 1.7-mm ϕ waveguide (output power of 1.5 kW). The irradiation time was 3 s.

Fig. 6
Fig. 6

Diameter and divergence angle of the beam patterns from the waveguide: (a) 1.5-mm ϕ waveguide and (b) 1.7-mm ϕ waveguide.

Fig. 7
Fig. 7

Theoretical transmission losses (transmissions) of each propagating mode corresponding to the output beam divergence: (a) 1.5-mm ϕ and (b) 1.7-mm ϕ.

Fig. 8
Fig. 8

Transmission under bending conditions.

Fig. 9
Fig. 9

Beam patterns under bending conditions observed 20 cm from the output end of the waveguide for an irradiation time of 3 s: Fig. (a) 1.5-mm ϕ waveguide (input power of 1.1 kW) and (b) 1.7-mm ϕ waveguide (input power of 0.8 kW).

Fig. 10
Fig. 10

Relationship between the input and output powers of the joined 1.7 mm ϕ × (2m + 2m) waveguide.

Fig. 11
Fig. 11

Beam patterns of the output beam through the joined waveguide when the output laser beam of 1.3 kW was incident on an acrylic block for 3 s. The distance from the output end is indicated under each figure.

Fig. 12
Fig. 12

Transmission of the joined waveguide under bending conditions.

Fig. 13
Fig. 13

Beam patterns of the output beam from the joined waveguide under bending conditions when the input power was 1.1 kW.

Fig. 14
Fig. 14

Photograph of laser welding using the hollow waveguide.

Fig. 15
Fig. 15

Example of laser welding where double-steel plates 1.0 mm thick were welded at 2 m/min with an output laser power of 2.6 kw through the 1.7 mm ϕ × 2 m waveguide.

Fig. 16
Fig. 16

Coupling efficiency of the HE1m mode as a function of the ratio w/T of the spot size w to the waveguide radius T.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η l m = | 0 T exp [ - ( r 2 / w 2 ) ] J 0 [ u m ( r / T ) ] r d r | 2 0 exp [ - 2 ( r 2 / w 2 ) ] r d r · 0 T J 0 2 [ u m ( r / T ) ] r d r ,
d = 1 ( a 2 - 1 ) 1 / 2 n 0 k 0 tan - 1 [ a ( a 2 - 1 ) 1 / 4 ] ,
α = 1 2 n 0 k 0 u 0 2 ( n 0 k 0 T ) 3 n n 2 + κ 2 [ 1 + a 2 ( a 2 - 1 ) 1 / 2 ] 2
α = n 0 k 0 u 0 2 ( n 0 k 0 T ) 3 n n 2 + κ 2 [ 1 + a 2 ( a 2 - 1 ) 1 / 2 ]
α = n 0 k 0 u 0 2 ( n 0 k 0 T ) 3 n n 2 + κ 2 a 2 ( a 2 - 1 ) 1 / 2 [ 1 + a 2 ( a 2 - 1 ) 1 / 2 ]
J n - 1 ( u 0 ) = 0             for the HE n m modes ,
J n + 1 ( u 0 ) = 0             for the EH n m modes ,
J 1 ( u 0 ) = 0             for the TE 0 m modes and the TM 0 m modes .

Metrics