Abstract

The retention stability of an aerosol particle in a quadrupole cell exposed to horizontal irradiation with a CO2 laser is investigated for several sizes of single spherical carbon particles. The stability of dynamic balance for the particle levitation is affected significantly by the irradiation and breaks down at a power higher than 105 W/m2. The particle is pushed away along the beam line, and its trajectory is slightly upward owing to the laser-induced aerosol heating.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Davis, “Single aerocolloidal particle instrumentation and measurement,” in Surface and Colloid Science, E. Matijević, ed. (Plenum, New York, 1987), Vol. 14, Chap. 1, pp. 1–88.
    [CrossRef]
  2. T. Iwamoto, M. Itoh, K. Takahashi, “Theoretical study on the stability characteristics of a quadrupole cell,” Aerosol Sci. Technol. 15, 127–134 (1991).
    [CrossRef]
  3. E. R. Monazam, D. J. Maloney, L. O. Lawson, “Measurement of heat capacities, temperatures, and absorptives of single particles in an electrodynamic balance,” Rev. Sci. Instrum. 60, 3460–3465 (1989).
    [CrossRef]
  4. E. J. Davis, A. K. Ray, “Single aerosol particle size and mass measurements using an electrodynamic balance,” J. Colloid Interface Sci. 75, 566–576 (1980).
    [CrossRef]
  5. G. O. Rubel, “Measurement of the condensational growth of single hygroscopic acid aerosol droplets,” J. Aerosol Sci. 12, 551–558 (1981).
    [CrossRef]
  6. H. H. Blau, D. J. McCleese, D. Watson, “Scattering by individual transparent spheres,” Appl. Opt. 9, 2522–2528 (1970).
    [CrossRef] [PubMed]
  7. E. J. Davis, P. Ravindran, “Single particle light scattering measurements using the electrodynamic balance,” Aerosol Sci. Technol. 1, 337–350 (1982).
    [CrossRef]
  8. R. L. Armstrong, “Laser-induced droplet heating,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds., Vol. 1 of Advanced Series in Applied Physics (World Scientific, Singapore, 1988), pp. 203–275.
  9. J. T. Houghton, G. J. Jenkins, J. J. Ephraus, eds., Climate Change, The IPCC Scientific Assessment: Report Prepared for IPCC by Working Group 1, (Cambridge U. Press, Cambridge, 1990).
  10. T. Iwamoto, M. Itoh, K. Takahashi, S. Kuno, “Laser heating and dynamic stability of an aerosol particle in a quadrupole cell,” in Theoretical and Applied Mechanics, Japan National Committee for Theoretical and Applied Mechanics, Science Council of Japan, ed. (U. of Tokyo Press, Tokyo, 1991), Vol. 40, pp. 63–69.
  11. A. B. Pluchino, S. Arnold, “Comprehensive model of the photophoretic force on a spherical microparticle,” Opt. Lett. 10, 261–263 (1985).
    [CrossRef] [PubMed]
  12. B. V. Derjaguin, Yu. I. Yalamov, “The theory of thermophoresis and diffusiophoresis of aerosol particles and their experimental testing,” in Topics in Current Aerosol Research, G. M. Hidy, J. R. Brock, eds. (Pergamon, London, 1970), Part 2, pp. 149–156.
  13. H.-B. Lin, “Infrared absorption spectroscopy of single particles using photophoresis,” Opt. Lett. 10, 68–70 (1985).
    [CrossRef] [PubMed]
  14. T. Namba, “Utilization of synchrotron radiation in the far-infrared region,” Rev. Sci. Instrum. 60, 1680–1685 (1989).
    [CrossRef]
  15. S. Arnold, L. M. Folan, “Spherical void electrodynamical levitator,” Rev. Sci. Instrum. 58, 1732–1735 (1987).
    [CrossRef]
  16. A. Ashkin, J. W. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [CrossRef]

1991 (1)

T. Iwamoto, M. Itoh, K. Takahashi, “Theoretical study on the stability characteristics of a quadrupole cell,” Aerosol Sci. Technol. 15, 127–134 (1991).
[CrossRef]

1989 (2)

E. R. Monazam, D. J. Maloney, L. O. Lawson, “Measurement of heat capacities, temperatures, and absorptives of single particles in an electrodynamic balance,” Rev. Sci. Instrum. 60, 3460–3465 (1989).
[CrossRef]

T. Namba, “Utilization of synchrotron radiation in the far-infrared region,” Rev. Sci. Instrum. 60, 1680–1685 (1989).
[CrossRef]

1987 (1)

S. Arnold, L. M. Folan, “Spherical void electrodynamical levitator,” Rev. Sci. Instrum. 58, 1732–1735 (1987).
[CrossRef]

1985 (2)

1982 (1)

E. J. Davis, P. Ravindran, “Single particle light scattering measurements using the electrodynamic balance,” Aerosol Sci. Technol. 1, 337–350 (1982).
[CrossRef]

1981 (1)

G. O. Rubel, “Measurement of the condensational growth of single hygroscopic acid aerosol droplets,” J. Aerosol Sci. 12, 551–558 (1981).
[CrossRef]

1980 (1)

E. J. Davis, A. K. Ray, “Single aerosol particle size and mass measurements using an electrodynamic balance,” J. Colloid Interface Sci. 75, 566–576 (1980).
[CrossRef]

1971 (1)

A. Ashkin, J. W. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

1970 (1)

Armstrong, R. L.

R. L. Armstrong, “Laser-induced droplet heating,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds., Vol. 1 of Advanced Series in Applied Physics (World Scientific, Singapore, 1988), pp. 203–275.

Arnold, S.

S. Arnold, L. M. Folan, “Spherical void electrodynamical levitator,” Rev. Sci. Instrum. 58, 1732–1735 (1987).
[CrossRef]

A. B. Pluchino, S. Arnold, “Comprehensive model of the photophoretic force on a spherical microparticle,” Opt. Lett. 10, 261–263 (1985).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, J. W. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

Blau, H. H.

Davis, E. J.

E. J. Davis, P. Ravindran, “Single particle light scattering measurements using the electrodynamic balance,” Aerosol Sci. Technol. 1, 337–350 (1982).
[CrossRef]

E. J. Davis, A. K. Ray, “Single aerosol particle size and mass measurements using an electrodynamic balance,” J. Colloid Interface Sci. 75, 566–576 (1980).
[CrossRef]

E. J. Davis, “Single aerocolloidal particle instrumentation and measurement,” in Surface and Colloid Science, E. Matijević, ed. (Plenum, New York, 1987), Vol. 14, Chap. 1, pp. 1–88.
[CrossRef]

Derjaguin, B. V.

B. V. Derjaguin, Yu. I. Yalamov, “The theory of thermophoresis and diffusiophoresis of aerosol particles and their experimental testing,” in Topics in Current Aerosol Research, G. M. Hidy, J. R. Brock, eds. (Pergamon, London, 1970), Part 2, pp. 149–156.

Dziedzic, J. W.

A. Ashkin, J. W. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

Folan, L. M.

S. Arnold, L. M. Folan, “Spherical void electrodynamical levitator,” Rev. Sci. Instrum. 58, 1732–1735 (1987).
[CrossRef]

Itoh, M.

T. Iwamoto, M. Itoh, K. Takahashi, “Theoretical study on the stability characteristics of a quadrupole cell,” Aerosol Sci. Technol. 15, 127–134 (1991).
[CrossRef]

T. Iwamoto, M. Itoh, K. Takahashi, S. Kuno, “Laser heating and dynamic stability of an aerosol particle in a quadrupole cell,” in Theoretical and Applied Mechanics, Japan National Committee for Theoretical and Applied Mechanics, Science Council of Japan, ed. (U. of Tokyo Press, Tokyo, 1991), Vol. 40, pp. 63–69.

Iwamoto, T.

T. Iwamoto, M. Itoh, K. Takahashi, “Theoretical study on the stability characteristics of a quadrupole cell,” Aerosol Sci. Technol. 15, 127–134 (1991).
[CrossRef]

T. Iwamoto, M. Itoh, K. Takahashi, S. Kuno, “Laser heating and dynamic stability of an aerosol particle in a quadrupole cell,” in Theoretical and Applied Mechanics, Japan National Committee for Theoretical and Applied Mechanics, Science Council of Japan, ed. (U. of Tokyo Press, Tokyo, 1991), Vol. 40, pp. 63–69.

Kuno, S.

T. Iwamoto, M. Itoh, K. Takahashi, S. Kuno, “Laser heating and dynamic stability of an aerosol particle in a quadrupole cell,” in Theoretical and Applied Mechanics, Japan National Committee for Theoretical and Applied Mechanics, Science Council of Japan, ed. (U. of Tokyo Press, Tokyo, 1991), Vol. 40, pp. 63–69.

Lawson, L. O.

E. R. Monazam, D. J. Maloney, L. O. Lawson, “Measurement of heat capacities, temperatures, and absorptives of single particles in an electrodynamic balance,” Rev. Sci. Instrum. 60, 3460–3465 (1989).
[CrossRef]

Lin, H.-B.

Maloney, D. J.

E. R. Monazam, D. J. Maloney, L. O. Lawson, “Measurement of heat capacities, temperatures, and absorptives of single particles in an electrodynamic balance,” Rev. Sci. Instrum. 60, 3460–3465 (1989).
[CrossRef]

McCleese, D. J.

Monazam, E. R.

E. R. Monazam, D. J. Maloney, L. O. Lawson, “Measurement of heat capacities, temperatures, and absorptives of single particles in an electrodynamic balance,” Rev. Sci. Instrum. 60, 3460–3465 (1989).
[CrossRef]

Namba, T.

T. Namba, “Utilization of synchrotron radiation in the far-infrared region,” Rev. Sci. Instrum. 60, 1680–1685 (1989).
[CrossRef]

Pluchino, A. B.

Ravindran, P.

E. J. Davis, P. Ravindran, “Single particle light scattering measurements using the electrodynamic balance,” Aerosol Sci. Technol. 1, 337–350 (1982).
[CrossRef]

Ray, A. K.

E. J. Davis, A. K. Ray, “Single aerosol particle size and mass measurements using an electrodynamic balance,” J. Colloid Interface Sci. 75, 566–576 (1980).
[CrossRef]

Rubel, G. O.

G. O. Rubel, “Measurement of the condensational growth of single hygroscopic acid aerosol droplets,” J. Aerosol Sci. 12, 551–558 (1981).
[CrossRef]

Takahashi, K.

T. Iwamoto, M. Itoh, K. Takahashi, “Theoretical study on the stability characteristics of a quadrupole cell,” Aerosol Sci. Technol. 15, 127–134 (1991).
[CrossRef]

T. Iwamoto, M. Itoh, K. Takahashi, S. Kuno, “Laser heating and dynamic stability of an aerosol particle in a quadrupole cell,” in Theoretical and Applied Mechanics, Japan National Committee for Theoretical and Applied Mechanics, Science Council of Japan, ed. (U. of Tokyo Press, Tokyo, 1991), Vol. 40, pp. 63–69.

Watson, D.

Yalamov, Yu. I.

B. V. Derjaguin, Yu. I. Yalamov, “The theory of thermophoresis and diffusiophoresis of aerosol particles and their experimental testing,” in Topics in Current Aerosol Research, G. M. Hidy, J. R. Brock, eds. (Pergamon, London, 1970), Part 2, pp. 149–156.

Aerosol Sci. Technol. (2)

T. Iwamoto, M. Itoh, K. Takahashi, “Theoretical study on the stability characteristics of a quadrupole cell,” Aerosol Sci. Technol. 15, 127–134 (1991).
[CrossRef]

E. J. Davis, P. Ravindran, “Single particle light scattering measurements using the electrodynamic balance,” Aerosol Sci. Technol. 1, 337–350 (1982).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Ashkin, J. W. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

J. Aerosol Sci. (1)

G. O. Rubel, “Measurement of the condensational growth of single hygroscopic acid aerosol droplets,” J. Aerosol Sci. 12, 551–558 (1981).
[CrossRef]

J. Colloid Interface Sci. (1)

E. J. Davis, A. K. Ray, “Single aerosol particle size and mass measurements using an electrodynamic balance,” J. Colloid Interface Sci. 75, 566–576 (1980).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (3)

T. Namba, “Utilization of synchrotron radiation in the far-infrared region,” Rev. Sci. Instrum. 60, 1680–1685 (1989).
[CrossRef]

S. Arnold, L. M. Folan, “Spherical void electrodynamical levitator,” Rev. Sci. Instrum. 58, 1732–1735 (1987).
[CrossRef]

E. R. Monazam, D. J. Maloney, L. O. Lawson, “Measurement of heat capacities, temperatures, and absorptives of single particles in an electrodynamic balance,” Rev. Sci. Instrum. 60, 3460–3465 (1989).
[CrossRef]

Other (5)

E. J. Davis, “Single aerocolloidal particle instrumentation and measurement,” in Surface and Colloid Science, E. Matijević, ed. (Plenum, New York, 1987), Vol. 14, Chap. 1, pp. 1–88.
[CrossRef]

R. L. Armstrong, “Laser-induced droplet heating,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds., Vol. 1 of Advanced Series in Applied Physics (World Scientific, Singapore, 1988), pp. 203–275.

J. T. Houghton, G. J. Jenkins, J. J. Ephraus, eds., Climate Change, The IPCC Scientific Assessment: Report Prepared for IPCC by Working Group 1, (Cambridge U. Press, Cambridge, 1990).

T. Iwamoto, M. Itoh, K. Takahashi, S. Kuno, “Laser heating and dynamic stability of an aerosol particle in a quadrupole cell,” in Theoretical and Applied Mechanics, Japan National Committee for Theoretical and Applied Mechanics, Science Council of Japan, ed. (U. of Tokyo Press, Tokyo, 1991), Vol. 40, pp. 63–69.

B. V. Derjaguin, Yu. I. Yalamov, “The theory of thermophoresis and diffusiophoresis of aerosol particles and their experimental testing,” in Topics in Current Aerosol Research, G. M. Hidy, J. R. Brock, eds. (Pergamon, London, 1970), Part 2, pp. 149–156.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Vertical cross section of a quadrupole cell: z, vertical direction; r, radial direction.

Fig. 2
Fig. 2

Layout of measuring system: L, lens; BSE, beam selector.

Fig. 3
Fig. 3

Observed upward particle trajectories by CO2 laser irradiation with D = 11.5 μm: laser intensity I = 4.7 × 105 W/m2 (asterisks), I = 7.8 × 105 W/m2 (open circles), I = 9.9 × 105 W/m2 (pluses), I = 1.2 × 106 W/m2 (crosses).

Fig. 4
Fig. 4

Observed downward particle trajectory by Ar laser irradiation with D = 11.5 μm: laser intensity I = 1.1 × 104 W/m2 (asterisks), I = 1.8 × 104 W/m2 (open circles), I = 2.2 × 104 W/m2 (pluses), I = 2.5 × 104 W/m2 (crosses).

Fig. 5
Fig. 5

Measured horizontal external force and calculated optical light pressure (solid and dashed lines) of corresponding particle (symbols) by CO2 laser irradiation: D = 11.5 μm (filled circles and bold solid line), D = 18.3 μm (pluses and dashed line), D = 27.9 μm (open circles and thinner solid line).

Fig. 6
Fig. 6

Relation of theoretical photophoretic force11 (solid curves) and measured horizontal external force: filled circles, CO2 laser irradiation; K, thermal creep coefficient12; J, asymmetry factor for the source function.11

Fig. 7
Fig. 7

Stability map for two-dimensional motion of a particle in a quadrupole cell (Vb = 0).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

m d 2 r d t 2 = - 3 π D μ C c d r d t - q ( V b + V 1 cos ω t ) 2 z 0 2 r + q F ( r , z ) V 0 z 0 ,
m d 2 z d t 2 = - 3 π D μ C c d z d t - m g + q ( V b + V 1 cos ω t ) z 0 2 z + q G ( r , z ) V 0 z 0 ,
α = 6 π D μ m ω C c ,
β = 4 q V 1 m ( z 0 ω ) 2 .

Metrics