Abstract

Coupling characteristics of a dual-mode–single-mode evanescent field coupler are obtained and its performance as a first-higher-order-mode filter is studied. It is observed that the performance of such a device as a modal filter depends critically on the relative powers and phases of the two modes of the dual-mode waveguide at its input. In particular it is shown that if the fractional power in the fundamental mode of the dual-mode waveguide is large, then the power filtered in the single-mode waveguide depends strongly on the phase difference between the two modes, and it is not a good measure of the power in the first higher mode of the dual-mode waveguide.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. V. Sorin, B. Y. Kim, H. J. Shaw, “Highly selective evanescent modal filter for two-mode optical fibers,” Opt. Lett. 11, 581–583 (1986).
    [CrossRef] [PubMed]
  2. B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, “Use of highly elliptical core fibers for two-mode fiber devices,” Opt. Lett. 12, 729–731 (1987).
    [CrossRef] [PubMed]
  3. J. N. Blake, S. Y. Huang, B. Y. Kim, H. J. Shaw, “Strain effects on highly elliptical core two-mode fibers,” Opt. Lett. 12, 732–734 (1987).
    [CrossRef] [PubMed]
  4. B. P. Pal, V. Priye, R. K. Varshney, A. Kumar, “Explanation of polarization dependence on differential phase shift in two-mode elliptical-core fiber strain gauges,” Electron. Lett. 25, 1041–1042 (1989).
    [CrossRef]
  5. A. Kumar, R. K. Varshney, “Propagation characteristics of dual-mode elliptical-core optical fibers,” Opt. Lett. 14, 817–819 (1989).
    [CrossRef] [PubMed]
  6. A. Kumar, U. K. Das, R. K. Varshney, I. C. Goyal, “Design of a mode filter consisting of two dual-mode highly elliptical core fibers,” IEEE J. Lightwave Technol. 8, 34–38 (1990).
    [CrossRef]
  7. S. Y. Huang, J. N. Blake, B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” IEEE J. Lightwave Technol. 8, 23–33 (1990).
    [CrossRef]
  8. K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” IEEE J. Lightwave Technol. 8, 1688–1696 (1990).
    [CrossRef]
  9. K. Thyagarajan, S. Diggavi, A. K. Ghatak, W. Johnstone, G. Stewart, B. Culshaw, “Thin metal-clad waveguide polarizers: analysis and comparison with experiment,” Opt. Lett. 15, 1041–1043 (1990).
    [CrossRef] [PubMed]
  10. A. Sharma, J. Kompella, P. K. Mishra, “Analysis of fiber directional coupler half-blocks using a new simple model for single-mode fibers,’ IEEE J. Lightwave Technol. 8, 143–151 (1990).
    [CrossRef]
  11. E. Marcatili, “Improved coupled-mode theory for dielectric guides,” IEEE J. Quantum Electron. QE-22, 988–993 (1986).
    [CrossRef]

1990 (5)

A. Kumar, U. K. Das, R. K. Varshney, I. C. Goyal, “Design of a mode filter consisting of two dual-mode highly elliptical core fibers,” IEEE J. Lightwave Technol. 8, 34–38 (1990).
[CrossRef]

S. Y. Huang, J. N. Blake, B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” IEEE J. Lightwave Technol. 8, 23–33 (1990).
[CrossRef]

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” IEEE J. Lightwave Technol. 8, 1688–1696 (1990).
[CrossRef]

K. Thyagarajan, S. Diggavi, A. K. Ghatak, W. Johnstone, G. Stewart, B. Culshaw, “Thin metal-clad waveguide polarizers: analysis and comparison with experiment,” Opt. Lett. 15, 1041–1043 (1990).
[CrossRef] [PubMed]

A. Sharma, J. Kompella, P. K. Mishra, “Analysis of fiber directional coupler half-blocks using a new simple model for single-mode fibers,’ IEEE J. Lightwave Technol. 8, 143–151 (1990).
[CrossRef]

1989 (2)

B. P. Pal, V. Priye, R. K. Varshney, A. Kumar, “Explanation of polarization dependence on differential phase shift in two-mode elliptical-core fiber strain gauges,” Electron. Lett. 25, 1041–1042 (1989).
[CrossRef]

A. Kumar, R. K. Varshney, “Propagation characteristics of dual-mode elliptical-core optical fibers,” Opt. Lett. 14, 817–819 (1989).
[CrossRef] [PubMed]

1987 (2)

1986 (2)

E. Marcatili, “Improved coupled-mode theory for dielectric guides,” IEEE J. Quantum Electron. QE-22, 988–993 (1986).
[CrossRef]

W. V. Sorin, B. Y. Kim, H. J. Shaw, “Highly selective evanescent modal filter for two-mode optical fibers,” Opt. Lett. 11, 581–583 (1986).
[CrossRef] [PubMed]

Blake, J. N.

Claus, R. O.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” IEEE J. Lightwave Technol. 8, 1688–1696 (1990).
[CrossRef]

Culshaw, B.

Das, U. K.

A. Kumar, U. K. Das, R. K. Varshney, I. C. Goyal, “Design of a mode filter consisting of two dual-mode highly elliptical core fibers,” IEEE J. Lightwave Technol. 8, 34–38 (1990).
[CrossRef]

Diggavi, S.

Ghatak, A. K.

Goyal, I. C.

A. Kumar, U. K. Das, R. K. Varshney, I. C. Goyal, “Design of a mode filter consisting of two dual-mode highly elliptical core fibers,” IEEE J. Lightwave Technol. 8, 34–38 (1990).
[CrossRef]

Huang, S. Y.

Johnstone, W.

Kim, B. Y.

Kompella, J.

A. Sharma, J. Kompella, P. K. Mishra, “Analysis of fiber directional coupler half-blocks using a new simple model for single-mode fibers,’ IEEE J. Lightwave Technol. 8, 143–151 (1990).
[CrossRef]

Kumar, A.

A. Kumar, U. K. Das, R. K. Varshney, I. C. Goyal, “Design of a mode filter consisting of two dual-mode highly elliptical core fibers,” IEEE J. Lightwave Technol. 8, 34–38 (1990).
[CrossRef]

B. P. Pal, V. Priye, R. K. Varshney, A. Kumar, “Explanation of polarization dependence on differential phase shift in two-mode elliptical-core fiber strain gauges,” Electron. Lett. 25, 1041–1042 (1989).
[CrossRef]

A. Kumar, R. K. Varshney, “Propagation characteristics of dual-mode elliptical-core optical fibers,” Opt. Lett. 14, 817–819 (1989).
[CrossRef] [PubMed]

Marcatili, E.

E. Marcatili, “Improved coupled-mode theory for dielectric guides,” IEEE J. Quantum Electron. QE-22, 988–993 (1986).
[CrossRef]

Miller, M. S.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” IEEE J. Lightwave Technol. 8, 1688–1696 (1990).
[CrossRef]

Mishra, P. K.

A. Sharma, J. Kompella, P. K. Mishra, “Analysis of fiber directional coupler half-blocks using a new simple model for single-mode fibers,’ IEEE J. Lightwave Technol. 8, 143–151 (1990).
[CrossRef]

Murphy, K. A.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” IEEE J. Lightwave Technol. 8, 1688–1696 (1990).
[CrossRef]

Pal, B. P.

B. P. Pal, V. Priye, R. K. Varshney, A. Kumar, “Explanation of polarization dependence on differential phase shift in two-mode elliptical-core fiber strain gauges,” Electron. Lett. 25, 1041–1042 (1989).
[CrossRef]

Priye, V.

B. P. Pal, V. Priye, R. K. Varshney, A. Kumar, “Explanation of polarization dependence on differential phase shift in two-mode elliptical-core fiber strain gauges,” Electron. Lett. 25, 1041–1042 (1989).
[CrossRef]

Sharma, A.

A. Sharma, J. Kompella, P. K. Mishra, “Analysis of fiber directional coupler half-blocks using a new simple model for single-mode fibers,’ IEEE J. Lightwave Technol. 8, 143–151 (1990).
[CrossRef]

Shaw, H. J.

Sorin, W. V.

Stewart, G.

Thyagarajan, K.

Varshney, R. K.

A. Kumar, U. K. Das, R. K. Varshney, I. C. Goyal, “Design of a mode filter consisting of two dual-mode highly elliptical core fibers,” IEEE J. Lightwave Technol. 8, 34–38 (1990).
[CrossRef]

B. P. Pal, V. Priye, R. K. Varshney, A. Kumar, “Explanation of polarization dependence on differential phase shift in two-mode elliptical-core fiber strain gauges,” Electron. Lett. 25, 1041–1042 (1989).
[CrossRef]

A. Kumar, R. K. Varshney, “Propagation characteristics of dual-mode elliptical-core optical fibers,” Opt. Lett. 14, 817–819 (1989).
[CrossRef] [PubMed]

Vengsarkar, A. M.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” IEEE J. Lightwave Technol. 8, 1688–1696 (1990).
[CrossRef]

Electron. Lett. (1)

B. P. Pal, V. Priye, R. K. Varshney, A. Kumar, “Explanation of polarization dependence on differential phase shift in two-mode elliptical-core fiber strain gauges,” Electron. Lett. 25, 1041–1042 (1989).
[CrossRef]

IEEE J. Lightwave Technol. (4)

A. Kumar, U. K. Das, R. K. Varshney, I. C. Goyal, “Design of a mode filter consisting of two dual-mode highly elliptical core fibers,” IEEE J. Lightwave Technol. 8, 34–38 (1990).
[CrossRef]

S. Y. Huang, J. N. Blake, B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” IEEE J. Lightwave Technol. 8, 23–33 (1990).
[CrossRef]

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” IEEE J. Lightwave Technol. 8, 1688–1696 (1990).
[CrossRef]

A. Sharma, J. Kompella, P. K. Mishra, “Analysis of fiber directional coupler half-blocks using a new simple model for single-mode fibers,’ IEEE J. Lightwave Technol. 8, 143–151 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Marcatili, “Improved coupled-mode theory for dielectric guides,” IEEE J. Quantum Electron. QE-22, 988–993 (1986).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Dual-mode–single-mode waveguide coupler, (b) corresponding refractive-index profile. The dashed lines indicate the effective indices (β a 1/k0 and β a 2/k0 for the DMW and β b /k0 for the SMW) of the guided modes of the individual waveguides.

Fig. 2
Fig. 2

Variation of powers P i in various individual modes of the DMW (i = a1, a2) and the SMW (i = b) along L when unit power is launched into the SMW.

Fig. 3
Fig. 3

Variation of the coupled power in the SMW as a function of L when the differential phase ϕ = 0 (solid curve) and ϕ = 7π (dashed curve). Here the DMW modes are excited with a ratio R = 4.

Fig. 4
Fig. 4

(a) Variation of the power P b as a function of the differential phase ϕ for different values of the power ratio R. (b) Variation of the percentage error in the power coupled to the SMW from the first mode of the DMW as a function of the differential phase ϕ for different values of the power ratio R.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n ( x ) = { n a , - ( d + 2 a ) < x < - d n b , d < x < ( d + 2 b ) n s , otherwise .
E s n = { A exp ( τ n x ) x < - ( d + 2 a ) B sin κ a n x + C cos κ a n x - ( d + 2 a ) < x < - d D exp ( τ n x ) + E exp ( - τ n x ) - d < x < + d . F cos κ b n x + G sin κ b n x d < x < ( d + 2 b ) H exp ( - τ n x ) x > ( d + 2 b )
κ a n 2 = k 0 2 n a 2 - β s n 2 , κ b n 2 = k 0 2 n b 2 - β s n 2 , τ n 2 = β s n 2 - k 0 2 n s 2 .
- κ a n 2 + τ n 2 + 2 τ n κ a n cot ( 2 κ a n a ) κ a n 2 + τ n 2 × - κ b n 2 + τ n 2 + 2 τ n κ b n cot ( 2 κ b n b ) κ b n 2 + τ n 2 = [ 1 - tanh ( τ n d ) 1 + tanh ( τ n d ) ] 2 .
ψ ( x , z ) = n = 1 3 S n E s n ( x ) exp ( - β s n z ) ,
S n = - + E s n ψ ( x , z = 0 ) d x ,
ψ ( x , z = 0 ) = A 1 E a 1 + A 2 E a 2 exp ( - i ϕ ) ,
ψ ( x , z = L ) = n = 1 3 S n E s n ( x ) exp ( - i β s n L ) .
P i = | - E i ( x ) ψ ( x , z = L ) d x | 2 ,
L c 0 = π / ( β S 1 - β S 3 ) , L c 1 = π / ( β S 1 - β S 2 ) .

Metrics