Abstract

The linear and second-order nonlinear optical properties of single-crystal zinc tris(thiourea) sulfate, or ZTS, are determined. The deduced nonlinear coefficients are |d31| = 0.31, |d32| = 0.35, and |d33| = 0.23 pm/V compared with a |d 14| value of 0.39 pm/V for potassium dihydrogen phosphate. Because it exhibits a low angular sensitivity (δΔk/δθ), ZTS may prove useful for type-II second-harmonic generation from 1.06 to 1.027 μm. We present the phase-matching measurement data for ZTS and compare the calculated frequency conversion efficiency for ZTS with that of several other well-characterized materials.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Belt, G. Gashurov, Y. S. Liu, “KTP as a harmonic generator for Nd:YAG lasers,” Laser Focus x(10), 110–124 (1985).
  2. R. S. Clark, “Getting the laser word to subs,” Photonics Spectra 22, 135–136 (1988).
  3. R. J. Gambino, “Optical storage disk technology,” Bull. Mater. Res. Soc. XV, 20–22 (1990), and references therein.
  4. G. Khanarian, ed., Nonlinear Optical Properties of Organic Materials III, Proc. Soc. Photo-Opt. Instrum. Eng.1337 (1990).
  5. S. Marder, G. Stucky, J. Sohn, eds., New Materials for Nonlinear Optics, Vol. 455 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1991).
    [CrossRef]
  6. S. P. Velsko, L. E. Davis, F. Wang, S. Monaco, D. Eimerl, “New organic materials for efficient harmonic generation of near ultraviolet light,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 178–181 (1988).
  7. D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Materials and Crystals (Academic, New York, 1987), Vols. 1 and 2.
  8. M. H. Lyons, ed., Materials for Non-Linear and Electro-Optics 1989, Vol. 103 of AIP Conference Series (American Institute of Physics, New York, 1989).
  9. S. R. Marder, J. W. Perry, W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626–628 (1989).
    [CrossRef] [PubMed]
  10. G. Meredith, “Design and characterization of molecular and polymeric nonlinear optical materials: successes and pitfalls,” in Nonlinear Optical Properties of Organic and Polymeric Materials, Vol. 233 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1983), pp. 27–56.
    [CrossRef]
  11. L. F. Warren, “New developments in ‘semiorganic’ nonlinear optical crystals,” in Electronic Materials—Our Future, Proceedings of the Fourth International SAMPE Electronics Conference, R. E. Allred, R. J. Martinez, K. B. Wischmann, eds. (Society for the Advancement of Material and Process Engineering, Covina, Calif., 1990), Vol. 4, pp. 388–396.
  12. S. Velsko, Laser Program Annual Report, Lawrence UCRL-JC-105000 (Lawrence Livermore National Laboratory, Livermore, Calif., 1990).
  13. P. R. Newman, L. F. Warren, P. Cunningham, T. Y. Chang, D. E. Cooper, G. L. Burdge, P. Polak-Dingels, C. K. Lowe-Ma, “Semiorganics: a new class of NLO materials,” in Advanced Organic Solid State Materials, L. Y. Chiang, P. M. Chaikin, D. O. Cowan, eds., Vol. 173 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1990), pp. 557–561.
  14. G. Xing, M. Jiang, Z. Shao, D. Xu, “Bis-thiourea cadmium chloride (BTCC)—a novel nonlinear optical crystal of organometallic complex,” Chin. Phys. Lasers 14, 357–364 (1987); X. Tao, M. Jiang, D. Xu, Z. Shao, “A new organometallic type nonlinear crystal: thiosemicarbazide cadmium chloride monohydrate,” Kexue Tongbao (foreign lang. ed.) 33, 651–654 (1988); W. S. Wang, K. Sutter, Ch. Bosshard, Z. Pan, H. Arend, P. Gunter, G. Chapuis, F. Nicolo, “Optical second-harmonic generation in single crystals of thiosemicarbazide cadmium bromide hydrate (Cd(NH2 CSNHNH2)Br2 · H2 O),” Jpn. J. Appl. Phys. 27, 1138–1141 (1988); N. Zhang, M. Jiang, D. Yuan, D. Xu, X. Tao, “A new nonlinear optical material—organometallic complex tri-allylthiourea cadmium chloride,” Chin. Phys. Lett. 6, 280–283 (1989).
    [CrossRef]
  15. G. D. Andreetti, L. Cavalca, A. Musatti, “The crystal and molecular structure of tris(thiourea) zinc(II) sulphate,” Acta Crystallogr. Sect. B 24, 683–690 (1968).
    [CrossRef]
  16. D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
    [CrossRef]
  17. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1974).
    [CrossRef]
  18. F. D. Bloss, An Introduction to the Methods of Optical Crystallography (Holt, Rinehart & Winston, New York, 1961), Chap. 9.
  19. M. V. Hobden, “Phase matched second harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
    [CrossRef]
  20. B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, Mass., 1978), Chap. 2.
  21. D. Eimerl, S. P. Velsko, in Laser Program Annual Report, UCRL-50021-85 (Lawrence Livermore National Laboratory, Livermore, Calif., 1985), pp. 7–70.
  22. S. P. Velsko, “Direct measurements of phase matching properties in small single crystals of new nonlinear materials,” Opt. Eng. 28, 76–84 (1989).
  23. H. Ito, H. Naito, H. Inaba, “Generalized study on angular dependence of induced second-order optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1974).
    [CrossRef]
  24. J. Q. Yao, T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
    [CrossRef]
  25. M. Kaschke, C. Koch, “Calculation of nonlinear optical polarization and phase matching in biaxial crystals,” Appl. Phys. B 49, 419–423 (1989).
    [CrossRef]
  26. B. Wyncke, F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363–376 (1989).
    [CrossRef]
  27. G. Boyd, D. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  28. S. K. Kurtz, “Measurement of nonlinear optical susceptibilities,” in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975) Vol. 1, Part A, Chap. 3.
  29. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
    [CrossRef]
  30. R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear opical coefficients of KDP, KD*P, BaB2O4 , LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
    [CrossRef]
  31. F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973), Chap. 4.
  32. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chap. 4.
  33. D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
    [CrossRef]
  34. S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 633–638 (1990).
  35. H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988).
    [CrossRef]
  36. J. M. Halbout, C. L. Tang, “Properties and applications of urea,” in Nonlinear Optical Properties of Organic Materials and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, New York, 1987), Vol. 1, pp. 385–404.

1990 (3)

R. J. Gambino, “Optical storage disk technology,” Bull. Mater. Res. Soc. XV, 20–22 (1990), and references therein.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear opical coefficients of KDP, KD*P, BaB2O4 , LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 633–638 (1990).

1989 (4)

S. P. Velsko, “Direct measurements of phase matching properties in small single crystals of new nonlinear materials,” Opt. Eng. 28, 76–84 (1989).

M. Kaschke, C. Koch, “Calculation of nonlinear optical polarization and phase matching in biaxial crystals,” Appl. Phys. B 49, 419–423 (1989).
[CrossRef]

B. Wyncke, F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363–376 (1989).
[CrossRef]

S. R. Marder, J. W. Perry, W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626–628 (1989).
[CrossRef] [PubMed]

1988 (2)

R. S. Clark, “Getting the laser word to subs,” Photonics Spectra 22, 135–136 (1988).

H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988).
[CrossRef]

1987 (4)

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
[CrossRef]

G. Xing, M. Jiang, Z. Shao, D. Xu, “Bis-thiourea cadmium chloride (BTCC)—a novel nonlinear optical crystal of organometallic complex,” Chin. Phys. Lasers 14, 357–364 (1987); X. Tao, M. Jiang, D. Xu, Z. Shao, “A new organometallic type nonlinear crystal: thiosemicarbazide cadmium chloride monohydrate,” Kexue Tongbao (foreign lang. ed.) 33, 651–654 (1988); W. S. Wang, K. Sutter, Ch. Bosshard, Z. Pan, H. Arend, P. Gunter, G. Chapuis, F. Nicolo, “Optical second-harmonic generation in single crystals of thiosemicarbazide cadmium bromide hydrate (Cd(NH2 CSNHNH2)Br2 · H2 O),” Jpn. J. Appl. Phys. 27, 1138–1141 (1988); N. Zhang, M. Jiang, D. Yuan, D. Xu, X. Tao, “A new nonlinear optical material—organometallic complex tri-allylthiourea cadmium chloride,” Chin. Phys. Lett. 6, 280–283 (1989).
[CrossRef]

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
[CrossRef]

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

1985 (1)

R. F. Belt, G. Gashurov, Y. S. Liu, “KTP as a harmonic generator for Nd:YAG lasers,” Laser Focus x(10), 110–124 (1985).

1984 (1)

J. Q. Yao, T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

1974 (2)

H. Ito, H. Naito, H. Inaba, “Generalized study on angular dependence of induced second-order optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1974).
[CrossRef]

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1974).
[CrossRef]

1968 (2)

G. D. Andreetti, L. Cavalca, A. Musatti, “The crystal and molecular structure of tris(thiourea) zinc(II) sulphate,” Acta Crystallogr. Sect. B 24, 683–690 (1968).
[CrossRef]

G. Boyd, D. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

1967 (1)

M. V. Hobden, “Phase matched second harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
[CrossRef]

Andreetti, G. D.

G. D. Andreetti, L. Cavalca, A. Musatti, “The crystal and molecular structure of tris(thiourea) zinc(II) sulphate,” Acta Crystallogr. Sect. B 24, 683–690 (1968).
[CrossRef]

Belt, R. F.

R. F. Belt, G. Gashurov, Y. S. Liu, “KTP as a harmonic generator for Nd:YAG lasers,” Laser Focus x(10), 110–124 (1985).

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chap. 4.

Bloss, F. D.

F. D. Bloss, An Introduction to the Methods of Optical Crystallography (Holt, Rinehart & Winston, New York, 1961), Chap. 9.

Bond, W. L.

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1974).
[CrossRef]

Boyd, G.

G. Boyd, D. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Brehat, F.

B. Wyncke, F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363–376 (1989).
[CrossRef]

Burdge, G. L.

P. R. Newman, L. F. Warren, P. Cunningham, T. Y. Chang, D. E. Cooper, G. L. Burdge, P. Polak-Dingels, C. K. Lowe-Ma, “Semiorganics: a new class of NLO materials,” in Advanced Organic Solid State Materials, L. Y. Chiang, P. M. Chaikin, D. O. Cowan, eds., Vol. 173 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1990), pp. 557–561.

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear opical coefficients of KDP, KD*P, BaB2O4 , LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Cavalca, L.

G. D. Andreetti, L. Cavalca, A. Musatti, “The crystal and molecular structure of tris(thiourea) zinc(II) sulphate,” Acta Crystallogr. Sect. B 24, 683–690 (1968).
[CrossRef]

Chang, T. Y.

P. R. Newman, L. F. Warren, P. Cunningham, T. Y. Chang, D. E. Cooper, G. L. Burdge, P. Polak-Dingels, C. K. Lowe-Ma, “Semiorganics: a new class of NLO materials,” in Advanced Organic Solid State Materials, L. Y. Chiang, P. M. Chaikin, D. O. Cowan, eds., Vol. 173 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1990), pp. 557–561.

Chen, C.

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 633–638 (1990).

Clark, R. S.

R. S. Clark, “Getting the laser word to subs,” Photonics Spectra 22, 135–136 (1988).

Cooper, D. E.

P. R. Newman, L. F. Warren, P. Cunningham, T. Y. Chang, D. E. Cooper, G. L. Burdge, P. Polak-Dingels, C. K. Lowe-Ma, “Semiorganics: a new class of NLO materials,” in Advanced Organic Solid State Materials, L. Y. Chiang, P. M. Chaikin, D. O. Cowan, eds., Vol. 173 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1990), pp. 557–561.

Cullity, B. D.

B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, Mass., 1978), Chap. 2.

Cunningham, P.

P. R. Newman, L. F. Warren, P. Cunningham, T. Y. Chang, D. E. Cooper, G. L. Burdge, P. Polak-Dingels, C. K. Lowe-Ma, “Semiorganics: a new class of NLO materials,” in Advanced Organic Solid State Materials, L. Y. Chiang, P. M. Chaikin, D. O. Cowan, eds., Vol. 173 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1990), pp. 557–561.

Davis, L.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Davis, L. E.

S. P. Velsko, L. E. Davis, F. Wang, S. Monaco, D. Eimerl, “New organic materials for efficient harmonic generation of near ultraviolet light,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 178–181 (1988).

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear opical coefficients of KDP, KD*P, BaB2O4 , LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
[CrossRef]

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
[CrossRef]

S. P. Velsko, L. E. Davis, F. Wang, S. Monaco, D. Eimerl, “New organic materials for efficient harmonic generation of near ultraviolet light,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 178–181 (1988).

D. Eimerl, S. P. Velsko, in Laser Program Annual Report, UCRL-50021-85 (Lawrence Livermore National Laboratory, Livermore, Calif., 1985), pp. 7–70.

Fahlen, T. S.

J. Q. Yao, T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear opical coefficients of KDP, KD*P, BaB2O4 , LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Gambino, R. J.

R. J. Gambino, “Optical storage disk technology,” Bull. Mater. Res. Soc. XV, 20–22 (1990), and references therein.

Gashurov, G.

R. F. Belt, G. Gashurov, Y. S. Liu, “KTP as a harmonic generator for Nd:YAG lasers,” Laser Focus x(10), 110–124 (1985).

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Halbout, J. M.

J. M. Halbout, C. L. Tang, “Properties and applications of urea,” in Nonlinear Optical Properties of Organic Materials and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, New York, 1987), Vol. 1, pp. 385–404.

Hobden, M. V.

M. V. Hobden, “Phase matched second harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
[CrossRef]

Huang, C.

H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988).
[CrossRef]

Inaba, H.

H. Ito, H. Naito, H. Inaba, “Generalized study on angular dependence of induced second-order optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1974).
[CrossRef]

Ito, H.

H. Ito, H. Naito, H. Inaba, “Generalized study on angular dependence of induced second-order optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1974).
[CrossRef]

Jiang, M.

G. Xing, M. Jiang, Z. Shao, D. Xu, “Bis-thiourea cadmium chloride (BTCC)—a novel nonlinear optical crystal of organometallic complex,” Chin. Phys. Lasers 14, 357–364 (1987); X. Tao, M. Jiang, D. Xu, Z. Shao, “A new organometallic type nonlinear crystal: thiosemicarbazide cadmium chloride monohydrate,” Kexue Tongbao (foreign lang. ed.) 33, 651–654 (1988); W. S. Wang, K. Sutter, Ch. Bosshard, Z. Pan, H. Arend, P. Gunter, G. Chapuis, F. Nicolo, “Optical second-harmonic generation in single crystals of thiosemicarbazide cadmium bromide hydrate (Cd(NH2 CSNHNH2)Br2 · H2 O),” Jpn. J. Appl. Phys. 27, 1138–1141 (1988); N. Zhang, M. Jiang, D. Yuan, D. Xu, X. Tao, “A new nonlinear optical material—organometallic complex tri-allylthiourea cadmium chloride,” Chin. Phys. Lett. 6, 280–283 (1989).
[CrossRef]

Kaschke, M.

M. Kaschke, C. Koch, “Calculation of nonlinear optical polarization and phase matching in biaxial crystals,” Appl. Phys. B 49, 419–423 (1989).
[CrossRef]

Kleinman, D.

G. Boyd, D. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Koch, C.

M. Kaschke, C. Koch, “Calculation of nonlinear optical polarization and phase matching in biaxial crystals,” Appl. Phys. B 49, 419–423 (1989).
[CrossRef]

Kurtz, S. K.

S. K. Kurtz, “Measurement of nonlinear optical susceptibilities,” in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975) Vol. 1, Part A, Chap. 3.

Lian, T.

H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988).
[CrossRef]

Liao, H.

H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988).
[CrossRef]

Lin, S.

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 633–638 (1990).

Liu, Y. S.

R. F. Belt, G. Gashurov, Y. S. Liu, “KTP as a harmonic generator for Nd:YAG lasers,” Laser Focus x(10), 110–124 (1985).

Lowe-Ma, C. K.

P. R. Newman, L. F. Warren, P. Cunningham, T. Y. Chang, D. E. Cooper, G. L. Burdge, P. Polak-Dingels, C. K. Lowe-Ma, “Semiorganics: a new class of NLO materials,” in Advanced Organic Solid State Materials, L. Y. Chiang, P. M. Chaikin, D. O. Cowan, eds., Vol. 173 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1990), pp. 557–561.

Marder, S. R.

S. R. Marder, J. W. Perry, W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626–628 (1989).
[CrossRef] [PubMed]

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear opical coefficients of KDP, KD*P, BaB2O4 , LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Meredith, G.

G. Meredith, “Design and characterization of molecular and polymeric nonlinear optical materials: successes and pitfalls,” in Nonlinear Optical Properties of Organic and Polymeric Materials, Vol. 233 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1983), pp. 27–56.
[CrossRef]

Midwinter, J. E.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973), Chap. 4.

Monaco, S.

S. P. Velsko, L. E. Davis, F. Wang, S. Monaco, D. Eimerl, “New organic materials for efficient harmonic generation of near ultraviolet light,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 178–181 (1988).

Musatti, A.

G. D. Andreetti, L. Cavalca, A. Musatti, “The crystal and molecular structure of tris(thiourea) zinc(II) sulphate,” Acta Crystallogr. Sect. B 24, 683–690 (1968).
[CrossRef]

Naito, H.

H. Ito, H. Naito, H. Inaba, “Generalized study on angular dependence of induced second-order optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1974).
[CrossRef]

Newman, P. R.

P. R. Newman, L. F. Warren, P. Cunningham, T. Y. Chang, D. E. Cooper, G. L. Burdge, P. Polak-Dingels, C. K. Lowe-Ma, “Semiorganics: a new class of NLO materials,” in Advanced Organic Solid State Materials, L. Y. Chiang, P. M. Chaikin, D. O. Cowan, eds., Vol. 173 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1990), pp. 557–561.

Perry, J. W.

S. R. Marder, J. W. Perry, W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626–628 (1989).
[CrossRef] [PubMed]

Polak-Dingels, P.

P. R. Newman, L. F. Warren, P. Cunningham, T. Y. Chang, D. E. Cooper, G. L. Burdge, P. Polak-Dingels, C. K. Lowe-Ma, “Semiorganics: a new class of NLO materials,” in Advanced Organic Solid State Materials, L. Y. Chiang, P. M. Chaikin, D. O. Cowan, eds., Vol. 173 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1990), pp. 557–561.

Schaefer, W. P.

S. R. Marder, J. W. Perry, W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626–628 (1989).
[CrossRef] [PubMed]

Shao, Z.

G. Xing, M. Jiang, Z. Shao, D. Xu, “Bis-thiourea cadmium chloride (BTCC)—a novel nonlinear optical crystal of organometallic complex,” Chin. Phys. Lasers 14, 357–364 (1987); X. Tao, M. Jiang, D. Xu, Z. Shao, “A new organometallic type nonlinear crystal: thiosemicarbazide cadmium chloride monohydrate,” Kexue Tongbao (foreign lang. ed.) 33, 651–654 (1988); W. S. Wang, K. Sutter, Ch. Bosshard, Z. Pan, H. Arend, P. Gunter, G. Chapuis, F. Nicolo, “Optical second-harmonic generation in single crystals of thiosemicarbazide cadmium bromide hydrate (Cd(NH2 CSNHNH2)Br2 · H2 O),” Jpn. J. Appl. Phys. 27, 1138–1141 (1988); N. Zhang, M. Jiang, D. Yuan, D. Xu, X. Tao, “A new nonlinear optical material—organometallic complex tri-allylthiourea cadmium chloride,” Chin. Phys. Lett. 6, 280–283 (1989).
[CrossRef]

Shen, H.

H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988).
[CrossRef]

Sun, Z.

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 633–638 (1990).

Tang, C. L.

J. M. Halbout, C. L. Tang, “Properties and applications of urea,” in Nonlinear Optical Properties of Organic Materials and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, New York, 1987), Vol. 1, pp. 385–404.

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

S. Velsko, Laser Program Annual Report, Lawrence UCRL-JC-105000 (Lawrence Livermore National Laboratory, Livermore, Calif., 1990).

Velsko, S. P.

S. P. Velsko, “Direct measurements of phase matching properties in small single crystals of new nonlinear materials,” Opt. Eng. 28, 76–84 (1989).

S. P. Velsko, L. E. Davis, F. Wang, S. Monaco, D. Eimerl, “New organic materials for efficient harmonic generation of near ultraviolet light,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 178–181 (1988).

D. Eimerl, S. P. Velsko, in Laser Program Annual Report, UCRL-50021-85 (Lawrence Livermore National Laboratory, Livermore, Calif., 1985), pp. 7–70.

Wang, F.

S. P. Velsko, L. E. Davis, F. Wang, S. Monaco, D. Eimerl, “New organic materials for efficient harmonic generation of near ultraviolet light,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 178–181 (1988).

Warren, L. F.

P. R. Newman, L. F. Warren, P. Cunningham, T. Y. Chang, D. E. Cooper, G. L. Burdge, P. Polak-Dingels, C. K. Lowe-Ma, “Semiorganics: a new class of NLO materials,” in Advanced Organic Solid State Materials, L. Y. Chiang, P. M. Chaikin, D. O. Cowan, eds., Vol. 173 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1990), pp. 557–561.

L. F. Warren, “New developments in ‘semiorganic’ nonlinear optical crystals,” in Electronic Materials—Our Future, Proceedings of the Fourth International SAMPE Electronics Conference, R. E. Allred, R. J. Martinez, K. B. Wischmann, eds. (Society for the Advancement of Material and Process Engineering, Covina, Calif., 1990), Vol. 4, pp. 388–396.

Wu, B.

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 633–638 (1990).

Wyncke, B.

B. Wyncke, F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363–376 (1989).
[CrossRef]

Xing, G.

G. Xing, M. Jiang, Z. Shao, D. Xu, “Bis-thiourea cadmium chloride (BTCC)—a novel nonlinear optical crystal of organometallic complex,” Chin. Phys. Lasers 14, 357–364 (1987); X. Tao, M. Jiang, D. Xu, Z. Shao, “A new organometallic type nonlinear crystal: thiosemicarbazide cadmium chloride monohydrate,” Kexue Tongbao (foreign lang. ed.) 33, 651–654 (1988); W. S. Wang, K. Sutter, Ch. Bosshard, Z. Pan, H. Arend, P. Gunter, G. Chapuis, F. Nicolo, “Optical second-harmonic generation in single crystals of thiosemicarbazide cadmium bromide hydrate (Cd(NH2 CSNHNH2)Br2 · H2 O),” Jpn. J. Appl. Phys. 27, 1138–1141 (1988); N. Zhang, M. Jiang, D. Yuan, D. Xu, X. Tao, “A new nonlinear optical material—organometallic complex tri-allylthiourea cadmium chloride,” Chin. Phys. Lett. 6, 280–283 (1989).
[CrossRef]

Xu, D.

G. Xing, M. Jiang, Z. Shao, D. Xu, “Bis-thiourea cadmium chloride (BTCC)—a novel nonlinear optical crystal of organometallic complex,” Chin. Phys. Lasers 14, 357–364 (1987); X. Tao, M. Jiang, D. Xu, Z. Shao, “A new organometallic type nonlinear crystal: thiosemicarbazide cadmium chloride monohydrate,” Kexue Tongbao (foreign lang. ed.) 33, 651–654 (1988); W. S. Wang, K. Sutter, Ch. Bosshard, Z. Pan, H. Arend, P. Gunter, G. Chapuis, F. Nicolo, “Optical second-harmonic generation in single crystals of thiosemicarbazide cadmium bromide hydrate (Cd(NH2 CSNHNH2)Br2 · H2 O),” Jpn. J. Appl. Phys. 27, 1138–1141 (1988); N. Zhang, M. Jiang, D. Yuan, D. Xu, X. Tao, “A new nonlinear optical material—organometallic complex tri-allylthiourea cadmium chloride,” Chin. Phys. Lett. 6, 280–283 (1989).
[CrossRef]

Yao, J. Q.

J. Q. Yao, T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

Yu, G.

H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988).
[CrossRef]

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Zeng, R.

H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988).
[CrossRef]

Zernike, F.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973), Chap. 4.

Zheng, Z.

H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988).
[CrossRef]

Zhou, Y.

H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988).
[CrossRef]

Acta Crystallogr. Sect. B (1)

G. D. Andreetti, L. Cavalca, A. Musatti, “The crystal and molecular structure of tris(thiourea) zinc(II) sulphate,” Acta Crystallogr. Sect. B 24, 683–690 (1968).
[CrossRef]

Appl. Phys. B (1)

M. Kaschke, C. Koch, “Calculation of nonlinear optical polarization and phase matching in biaxial crystals,” Appl. Phys. B 49, 419–423 (1989).
[CrossRef]

Bull. Mater. Res. Soc. (1)

R. J. Gambino, “Optical storage disk technology,” Bull. Mater. Res. Soc. XV, 20–22 (1990), and references therein.

Chin. Phys. Lasers (1)

G. Xing, M. Jiang, Z. Shao, D. Xu, “Bis-thiourea cadmium chloride (BTCC)—a novel nonlinear optical crystal of organometallic complex,” Chin. Phys. Lasers 14, 357–364 (1987); X. Tao, M. Jiang, D. Xu, Z. Shao, “A new organometallic type nonlinear crystal: thiosemicarbazide cadmium chloride monohydrate,” Kexue Tongbao (foreign lang. ed.) 33, 651–654 (1988); W. S. Wang, K. Sutter, Ch. Bosshard, Z. Pan, H. Arend, P. Gunter, G. Chapuis, F. Nicolo, “Optical second-harmonic generation in single crystals of thiosemicarbazide cadmium bromide hydrate (Cd(NH2 CSNHNH2)Br2 · H2 O),” Jpn. J. Appl. Phys. 27, 1138–1141 (1988); N. Zhang, M. Jiang, D. Yuan, D. Xu, X. Tao, “A new nonlinear optical material—organometallic complex tri-allylthiourea cadmium chloride,” Chin. Phys. Lett. 6, 280–283 (1989).
[CrossRef]

Ferroelectrics (1)

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear opical coefficients of KDP, KD*P, BaB2O4 , LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

J. Appl. Phys. (7)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 633–638 (1990).

H. Ito, H. Naito, H. Inaba, “Generalized study on angular dependence of induced second-order optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1974).
[CrossRef]

J. Q. Yao, T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984).
[CrossRef]

G. Boyd, D. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1974).
[CrossRef]

M. V. Hobden, “Phase matched second harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
[CrossRef]

J. Phys. B (1)

B. Wyncke, F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363–376 (1989).
[CrossRef]

Laser Focus (1)

R. F. Belt, G. Gashurov, Y. S. Liu, “KTP as a harmonic generator for Nd:YAG lasers,” Laser Focus x(10), 110–124 (1985).

Opt. Eng. (1)

S. P. Velsko, “Direct measurements of phase matching properties in small single crystals of new nonlinear materials,” Opt. Eng. 28, 76–84 (1989).

Opt. Laser Technol. (1)

H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988).
[CrossRef]

Photonics Spectra (1)

R. S. Clark, “Getting the laser word to subs,” Photonics Spectra 22, 135–136 (1988).

Science (1)

S. R. Marder, J. W. Perry, W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626–628 (1989).
[CrossRef] [PubMed]

Other (16)

G. Meredith, “Design and characterization of molecular and polymeric nonlinear optical materials: successes and pitfalls,” in Nonlinear Optical Properties of Organic and Polymeric Materials, Vol. 233 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1983), pp. 27–56.
[CrossRef]

L. F. Warren, “New developments in ‘semiorganic’ nonlinear optical crystals,” in Electronic Materials—Our Future, Proceedings of the Fourth International SAMPE Electronics Conference, R. E. Allred, R. J. Martinez, K. B. Wischmann, eds. (Society for the Advancement of Material and Process Engineering, Covina, Calif., 1990), Vol. 4, pp. 388–396.

S. Velsko, Laser Program Annual Report, Lawrence UCRL-JC-105000 (Lawrence Livermore National Laboratory, Livermore, Calif., 1990).

P. R. Newman, L. F. Warren, P. Cunningham, T. Y. Chang, D. E. Cooper, G. L. Burdge, P. Polak-Dingels, C. K. Lowe-Ma, “Semiorganics: a new class of NLO materials,” in Advanced Organic Solid State Materials, L. Y. Chiang, P. M. Chaikin, D. O. Cowan, eds., Vol. 173 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1990), pp. 557–561.

G. Khanarian, ed., Nonlinear Optical Properties of Organic Materials III, Proc. Soc. Photo-Opt. Instrum. Eng.1337 (1990).

S. Marder, G. Stucky, J. Sohn, eds., New Materials for Nonlinear Optics, Vol. 455 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1991).
[CrossRef]

S. P. Velsko, L. E. Davis, F. Wang, S. Monaco, D. Eimerl, “New organic materials for efficient harmonic generation of near ultraviolet light,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 178–181 (1988).

D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Materials and Crystals (Academic, New York, 1987), Vols. 1 and 2.

M. H. Lyons, ed., Materials for Non-Linear and Electro-Optics 1989, Vol. 103 of AIP Conference Series (American Institute of Physics, New York, 1989).

B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, Mass., 1978), Chap. 2.

D. Eimerl, S. P. Velsko, in Laser Program Annual Report, UCRL-50021-85 (Lawrence Livermore National Laboratory, Livermore, Calif., 1985), pp. 7–70.

F. D. Bloss, An Introduction to the Methods of Optical Crystallography (Holt, Rinehart & Winston, New York, 1961), Chap. 9.

J. M. Halbout, C. L. Tang, “Properties and applications of urea,” in Nonlinear Optical Properties of Organic Materials and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, New York, 1987), Vol. 1, pp. 385–404.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973), Chap. 4.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chap. 4.

S. K. Kurtz, “Measurement of nonlinear optical susceptibilities,” in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975) Vol. 1, Part A, Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Photograph of ZTS crystals. The ruled background is 0.2 in. (7.87 mm) per square.

Fig. 2
Fig. 2

(a) Resonance structures representing π-orbital electron delocalization in planar thiourea and (b) a projection of the ZTS molecule; three thiourea sulfur atoms and a sulfate ion oxygen atom are complexed to a Zn(2+) ion in a tetrahedral fashion.

Fig. 3
Fig. 3

(a) Diagrammatic representation of the ZTS crystal habit indicating the relation between the crystallographic, dielectric, and laboratory axes; (b) a projection of the ZTS crystal structure approximately along the [010] direction showing the alignment of the molecular dipoles (shaded Zn–O bonds). The arrow in (b) points along the c axis and indicates the direction of the net dipole moment. The upper right and lower left molecules are below the plane of the upper left and lower right molecules. For clarity, we have omitted the hydrogen atoms in this projection.

Fig. 4
Fig. 4

Transmission spectrum for ZTS.

Fig. 5
Fig. 5

Refractive-index dispersion curves for ZTS.

Fig. 6
Fig. 6

Stereographic projection of predicted type-I and type-II 1.064-μm SHG phase-matching loci for ZTS. The asterisk denotes the position of the optic axis at 1.064 μm.. Note that the positive α axis points into the plane of the page.

Fig. 7
Fig. 7

Measured type-I SHG phase-matching loci for ZTS. The letters A and B represent positions of maximum intensity, while the letter O represents positions of zero intensity. Note that the positive α axis points into the plane of the page.

Fig. 8
Fig. 8

Measured type-II SHG phase-matching loci for ZTS. The letter A denotes the position of global intensity maxima while the letter B designates intensity minima. There are no positions of zero intensity. Note that the positive α axis points into the plane of the page.

Fig. 9
Fig. 9

(a) Sinc2(Ψ) curve for ZTS, (b) sinc2(Ψ) curve for KDP. The angle Ψ represents angular variations made perpendicular to the phase-matching locus at a given phase-matching position.

Tables (11)

Tables Icon

Table 1 Index-of-Refraction Data for ZTS

Tables Icon

Table 2 Labels Used to Denote the Principal Dielectric and Crystallographic Axes in ZTS

Tables Icon

Table 3 Sellmeler Coefficients for ZTS

Tables Icon

Table 4 Refractive Indices of ZTS at 1.064 and 0.532 μma

Tables Icon

Table 5 Wavelengths for Which Noncritically Phase-Matched Doubling Is Possible for ZTS at Room Temperature

Tables Icon

Table 6 1.064-μm SHG Powder Intensity Values for ZTS and Other Well-Characterized Materials Relative to KDP

Tables Icon

Table 7 Sphere Measurement Data for ZTS Scaled According to Plate Measurement Results

Tables Icon

Table 8 Magnitudes of the dij Coefficients Calculated for ZTS with Data In Table 7

Tables Icon

Table 9 ZTS Phase-Matching Loci Data Calculated by Using |d31| and |d32| Coefficientsa

Tables Icon

Table 10 Type-II 1.064-μm SHG Parameters for Several Well-Characterized Materials at Optimum Angle Coordinatesa

Tables Icon

Table 11 Maximum Efficiency for Type-II Doubling of a 5-MW Diffraction-Limited 1.064-μm Laser Pulse, and Length of Optimized Crystal for a Fluence of 10 J/cm2

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

n 2 = A + B / ( λ 2 - C ) - D λ 2 .
d eff samp = ( n 1 samp n 2 samp n 3 samp I 3 samp n 1 KDP n 2 KDP n 3 KDP I 3 KDP ) 1 / 2 ( L KDP 2 L samp 2 ) d eff KDP ,
d eff = U ^ ω 3 × [ 0 0 0 0 d 15 0 0 0 0 d 24 0 0 d 31 d 32 d 33 0 0 0 ] × [ ( U ^ ω 1 U ^ ω 2 ) 1 ( U ^ ω 1 U ^ ω 2 ) 2 ( U ^ ω 1 U ^ ω 2 ) 3 ( U ^ ω 1 U ^ ω 2 ) 4 ( U ^ ω 1 U ^ ω 2 ) 5 ( U ^ ω 1 U ^ ω 2 ) 6 ] ,
l ( j k ) = { 1 : j k = x x 2 : j k = y y 3 : j k = z z 4 : j k = y z 5 : j k = x z 6 : j k = x y } .
U ^ ω 1 = 1 x ^ + 0 y ^ + 0 z ^ , U ^ ω 2 = 0 x ^ + sin ( θ ) y ^ + cos ( θ ) z ^ , U ^ ω 3 = 1 x ^ + 0 y ^ + 0 z ^ .
d eff = d 15 × ( U ^ ω 1 U ^ ω 2 ) 5 , d eff = d 15 × ( U ω 1 - x U ω 2 - z + U ω 1 - z U ω 2 - x ) , d eff = d 15 × cos ( θ ) .
d 32 = ( d eff 2 ω - IA ) / cos ( ϕ ) ,
d 15 = ( d eff 2 ω - IIB ) / cos ( θ ) .
d eff 2 ω - IB = 0.23 × d 33 - 0.45 × d 32 + 0.044 × d 31 ,
0 = 0.14 × d 33 - 0.06 × d 32 + 0.027 × d 31 .
d i l ( pm / V ) = ± [ 0 0 0 0 0.31 0 0 0 0 0.35 0 0 0.31 0.35 - 0.23 0 0 0 ] .
P th = ( λ β θ C ) 2 ,

Metrics