Abstract

Two methods for polarization stabilization of an internal-mirror 3.39-μm He–Ne laser are reported. The first relies on a concurrently lasing 1.15-μm transition by fixing the relative amplitude of two orthogonally polarized longitudinal modes that are split by a Rochon prism and detected with separate Si photodiodes. In the second method, two spatially separated orthogonally polarized adjacent 3.39-μm modes are optically balanced, differentially chopped, and recombined on a single InSb photodiode for phase-sensitive detection. The dual-wavelength scheme has been tested by beating against a methane-stabilized 3.39-μm He–Ne laser, which yields maximum excursions of < 0.5 MHz over several hours and comparable reproducibility. The polarization-stabilized He–Ne laser has been used as a reference for a tunable color-center laser molecular-beam optothermal spectrometer and provides a precision of better than 2 MHz.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Pine, G. T. Fraser, “Vibrational predissociation in the CO2 dimer and trimer and rare gas–CO2 complexes,” J. Chem. Phys. 89, 100–1099 (1988).
    [Crossref]
  2. R. L. Barger, J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–8 (1969).
    [Crossref]
  3. K. M. Evenson, J. S. Wells, F. R. Peterson, B. L. Danielson, G. W. Day, “Accurate frequencies of molecular transitions used in laser stabilization: the 3.39 μm transition in CH4 and the 9.33 and 10.18 μm transitions in CO2,” Appl. Phys. Lett. 22, 192–195 (1973).
    [Crossref]
  4. R. L. Barger, J. L. Hall, “Wavelength of the 3.39 μm laser-saturated absorption line of methane,” Appl. Phys. Lett. 22, 196–199 (1973).
    [Crossref]
  5. R. Balhorn, H. Kunzmann, F. Lebowsky, “Frequency stabilization of internal-mirror helium–neon lasers,” Appl. Opt. 11, 742–743 (1972).
    [Crossref] [PubMed]
  6. T. M. Niebauer, J. E. Faller, H. M. Godwin, J. L. Hall, R. L. Barger, “Frequency stability measurements on polarization-stabilized He–Ne lasers,” Appl. Opt. 27, 1285–1289 (1988), and references therein.
    [Crossref] [PubMed]
  7. T. Fellman, P. Junger, B. Stahlberg, “Stabilization of a green He–Ne laser,” Appl. Opt. 26, 2705–2706 (1987).
    [Crossref] [PubMed]
  8. M-L. Junttila, B. Stahlberg, “Investigation of the mode properties and stabilization of an internal mirror 1523 nm He–Ne laser,” Phys. Scr. 41, 667–668 (1990).
    [Crossref]
  9. W. G. Sweitzer, E. G. Kessler, R. D. Deslattes, H. P. Layer, J. R. Whetstone, “Description, performance, and wavelengths of iodine stabilized lasers,” Appl. Opt. 12, 2927–2938 (1973), and references therein.
    [Crossref]
  10. A. L. Bloom, W. E. Bell, R. C. Rempel, “Laser operation at 3.39 μm in a helium-neon mixture,” Appl. Opt. 2, 317–318 (1963).
    [Crossref]
  11. H. DeLang, G. Bouwhuis, E. T. Ferguson, “Saturation induced anisotropy in a gaseous medium in zero magnetic field,” Phys. Lett. 19, 482–484 (1965).
    [Crossref]
  12. E. K. Hasle, “Polarization properties of He–Ne lasers,” Opt. Commun. 31, 206–210 (1979).
    [Crossref]
  13. T. J. Bridges, J. W. Kluver, “Dichroic calcite polarizers for the infrared,” Appl. Opt. 4, 1121–1125 (1965).
    [Crossref]
  14. J. N. Desai, T. Chandrasekhar, R. Madhavan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
    [Crossref]
  15. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
    [Crossref]
  16. J. A. Barnes, “Tables of bias functions, B1 and B2, for variances based on finite samples of processes with power law spectral densities,” Natl. Bur. Stand. Tech. Note 375 (U.S. Government Printing Office, Washington, D.C., 1969).
  17. M. J. Coulombe, A. S. Pine, “Linear scan control of tunable lasers using a scanning Fabry–Perot,” Appl. Opt. 18, 1505–1512 (1979).
    [Crossref] [PubMed]
  18. J. L. Domenech, M-L. Junttila, A. S. Pine, “Molecular-beam spectrum of the 3.3 μm ν12 band of benzene,” J. Mol. Spectrosc. 149, 391–398 (1991).
    [Crossref]

1991 (1)

J. L. Domenech, M-L. Junttila, A. S. Pine, “Molecular-beam spectrum of the 3.3 μm ν12 band of benzene,” J. Mol. Spectrosc. 149, 391–398 (1991).
[Crossref]

1990 (1)

M-L. Junttila, B. Stahlberg, “Investigation of the mode properties and stabilization of an internal mirror 1523 nm He–Ne laser,” Phys. Scr. 41, 667–668 (1990).
[Crossref]

1988 (2)

1987 (1)

1979 (3)

M. J. Coulombe, A. S. Pine, “Linear scan control of tunable lasers using a scanning Fabry–Perot,” Appl. Opt. 18, 1505–1512 (1979).
[Crossref] [PubMed]

E. K. Hasle, “Polarization properties of He–Ne lasers,” Opt. Commun. 31, 206–210 (1979).
[Crossref]

J. N. Desai, T. Chandrasekhar, R. Madhavan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
[Crossref]

1973 (3)

W. G. Sweitzer, E. G. Kessler, R. D. Deslattes, H. P. Layer, J. R. Whetstone, “Description, performance, and wavelengths of iodine stabilized lasers,” Appl. Opt. 12, 2927–2938 (1973), and references therein.
[Crossref]

K. M. Evenson, J. S. Wells, F. R. Peterson, B. L. Danielson, G. W. Day, “Accurate frequencies of molecular transitions used in laser stabilization: the 3.39 μm transition in CH4 and the 9.33 and 10.18 μm transitions in CO2,” Appl. Phys. Lett. 22, 192–195 (1973).
[Crossref]

R. L. Barger, J. L. Hall, “Wavelength of the 3.39 μm laser-saturated absorption line of methane,” Appl. Phys. Lett. 22, 196–199 (1973).
[Crossref]

1972 (1)

1969 (1)

R. L. Barger, J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–8 (1969).
[Crossref]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[Crossref]

1965 (2)

T. J. Bridges, J. W. Kluver, “Dichroic calcite polarizers for the infrared,” Appl. Opt. 4, 1121–1125 (1965).
[Crossref]

H. DeLang, G. Bouwhuis, E. T. Ferguson, “Saturation induced anisotropy in a gaseous medium in zero magnetic field,” Phys. Lett. 19, 482–484 (1965).
[Crossref]

1963 (1)

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[Crossref]

Balhorn, R.

Barger, R. L.

T. M. Niebauer, J. E. Faller, H. M. Godwin, J. L. Hall, R. L. Barger, “Frequency stability measurements on polarization-stabilized He–Ne lasers,” Appl. Opt. 27, 1285–1289 (1988), and references therein.
[Crossref] [PubMed]

R. L. Barger, J. L. Hall, “Wavelength of the 3.39 μm laser-saturated absorption line of methane,” Appl. Phys. Lett. 22, 196–199 (1973).
[Crossref]

R. L. Barger, J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–8 (1969).
[Crossref]

Barnes, J. A.

J. A. Barnes, “Tables of bias functions, B1 and B2, for variances based on finite samples of processes with power law spectral densities,” Natl. Bur. Stand. Tech. Note 375 (U.S. Government Printing Office, Washington, D.C., 1969).

Bell, W. E.

Bloom, A. L.

Bouwhuis, G.

H. DeLang, G. Bouwhuis, E. T. Ferguson, “Saturation induced anisotropy in a gaseous medium in zero magnetic field,” Phys. Lett. 19, 482–484 (1965).
[Crossref]

Bridges, T. J.

Chandrasekhar, T.

J. N. Desai, T. Chandrasekhar, R. Madhavan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
[Crossref]

Coulombe, M. J.

Danielson, B. L.

K. M. Evenson, J. S. Wells, F. R. Peterson, B. L. Danielson, G. W. Day, “Accurate frequencies of molecular transitions used in laser stabilization: the 3.39 μm transition in CH4 and the 9.33 and 10.18 μm transitions in CO2,” Appl. Phys. Lett. 22, 192–195 (1973).
[Crossref]

Day, G. W.

K. M. Evenson, J. S. Wells, F. R. Peterson, B. L. Danielson, G. W. Day, “Accurate frequencies of molecular transitions used in laser stabilization: the 3.39 μm transition in CH4 and the 9.33 and 10.18 μm transitions in CO2,” Appl. Phys. Lett. 22, 192–195 (1973).
[Crossref]

DeLang, H.

H. DeLang, G. Bouwhuis, E. T. Ferguson, “Saturation induced anisotropy in a gaseous medium in zero magnetic field,” Phys. Lett. 19, 482–484 (1965).
[Crossref]

Desai, J. N.

J. N. Desai, T. Chandrasekhar, R. Madhavan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
[Crossref]

Deslattes, R. D.

Domenech, J. L.

J. L. Domenech, M-L. Junttila, A. S. Pine, “Molecular-beam spectrum of the 3.3 μm ν12 band of benzene,” J. Mol. Spectrosc. 149, 391–398 (1991).
[Crossref]

Evenson, K. M.

K. M. Evenson, J. S. Wells, F. R. Peterson, B. L. Danielson, G. W. Day, “Accurate frequencies of molecular transitions used in laser stabilization: the 3.39 μm transition in CH4 and the 9.33 and 10.18 μm transitions in CO2,” Appl. Phys. Lett. 22, 192–195 (1973).
[Crossref]

Faller, J. E.

Fellman, T.

Ferguson, E. T.

H. DeLang, G. Bouwhuis, E. T. Ferguson, “Saturation induced anisotropy in a gaseous medium in zero magnetic field,” Phys. Lett. 19, 482–484 (1965).
[Crossref]

Fraser, G. T.

A. S. Pine, G. T. Fraser, “Vibrational predissociation in the CO2 dimer and trimer and rare gas–CO2 complexes,” J. Chem. Phys. 89, 100–1099 (1988).
[Crossref]

Godwin, H. M.

Hall, J. L.

T. M. Niebauer, J. E. Faller, H. M. Godwin, J. L. Hall, R. L. Barger, “Frequency stability measurements on polarization-stabilized He–Ne lasers,” Appl. Opt. 27, 1285–1289 (1988), and references therein.
[Crossref] [PubMed]

R. L. Barger, J. L. Hall, “Wavelength of the 3.39 μm laser-saturated absorption line of methane,” Appl. Phys. Lett. 22, 196–199 (1973).
[Crossref]

R. L. Barger, J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–8 (1969).
[Crossref]

Hasle, E. K.

E. K. Hasle, “Polarization properties of He–Ne lasers,” Opt. Commun. 31, 206–210 (1979).
[Crossref]

Junger, P.

Junttila, M-L.

J. L. Domenech, M-L. Junttila, A. S. Pine, “Molecular-beam spectrum of the 3.3 μm ν12 band of benzene,” J. Mol. Spectrosc. 149, 391–398 (1991).
[Crossref]

M-L. Junttila, B. Stahlberg, “Investigation of the mode properties and stabilization of an internal mirror 1523 nm He–Ne laser,” Phys. Scr. 41, 667–668 (1990).
[Crossref]

Kessler, E. G.

Kluver, J. W.

Kunzmann, H.

Layer, H. P.

Lebowsky, F.

Madhavan, R.

J. N. Desai, T. Chandrasekhar, R. Madhavan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
[Crossref]

Niebauer, T. M.

Peterson, F. R.

K. M. Evenson, J. S. Wells, F. R. Peterson, B. L. Danielson, G. W. Day, “Accurate frequencies of molecular transitions used in laser stabilization: the 3.39 μm transition in CH4 and the 9.33 and 10.18 μm transitions in CO2,” Appl. Phys. Lett. 22, 192–195 (1973).
[Crossref]

Pine, A. S.

J. L. Domenech, M-L. Junttila, A. S. Pine, “Molecular-beam spectrum of the 3.3 μm ν12 band of benzene,” J. Mol. Spectrosc. 149, 391–398 (1991).
[Crossref]

A. S. Pine, G. T. Fraser, “Vibrational predissociation in the CO2 dimer and trimer and rare gas–CO2 complexes,” J. Chem. Phys. 89, 100–1099 (1988).
[Crossref]

M. J. Coulombe, A. S. Pine, “Linear scan control of tunable lasers using a scanning Fabry–Perot,” Appl. Opt. 18, 1505–1512 (1979).
[Crossref] [PubMed]

Rempel, R. C.

Stahlberg, B.

M-L. Junttila, B. Stahlberg, “Investigation of the mode properties and stabilization of an internal mirror 1523 nm He–Ne laser,” Phys. Scr. 41, 667–668 (1990).
[Crossref]

T. Fellman, P. Junger, B. Stahlberg, “Stabilization of a green He–Ne laser,” Appl. Opt. 26, 2705–2706 (1987).
[Crossref] [PubMed]

Sweitzer, W. G.

Wells, J. S.

K. M. Evenson, J. S. Wells, F. R. Peterson, B. L. Danielson, G. W. Day, “Accurate frequencies of molecular transitions used in laser stabilization: the 3.39 μm transition in CH4 and the 9.33 and 10.18 μm transitions in CO2,” Appl. Phys. Lett. 22, 192–195 (1973).
[Crossref]

Whetstone, J. R.

Appl. Opt. (7)

Appl. Phys. Lett. (2)

K. M. Evenson, J. S. Wells, F. R. Peterson, B. L. Danielson, G. W. Day, “Accurate frequencies of molecular transitions used in laser stabilization: the 3.39 μm transition in CH4 and the 9.33 and 10.18 μm transitions in CO2,” Appl. Phys. Lett. 22, 192–195 (1973).
[Crossref]

R. L. Barger, J. L. Hall, “Wavelength of the 3.39 μm laser-saturated absorption line of methane,” Appl. Phys. Lett. 22, 196–199 (1973).
[Crossref]

J. Chem. Phys. (1)

A. S. Pine, G. T. Fraser, “Vibrational predissociation in the CO2 dimer and trimer and rare gas–CO2 complexes,” J. Chem. Phys. 89, 100–1099 (1988).
[Crossref]

J. Mol. Spectrosc. (1)

J. L. Domenech, M-L. Junttila, A. S. Pine, “Molecular-beam spectrum of the 3.3 μm ν12 band of benzene,” J. Mol. Spectrosc. 149, 391–398 (1991).
[Crossref]

J. Phys. E (1)

J. N. Desai, T. Chandrasekhar, R. Madhavan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979).
[Crossref]

Opt. Commun. (1)

E. K. Hasle, “Polarization properties of He–Ne lasers,” Opt. Commun. 31, 206–210 (1979).
[Crossref]

Phys. Lett. (1)

H. DeLang, G. Bouwhuis, E. T. Ferguson, “Saturation induced anisotropy in a gaseous medium in zero magnetic field,” Phys. Lett. 19, 482–484 (1965).
[Crossref]

Phys. Rev. Lett. (1)

R. L. Barger, J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–8 (1969).
[Crossref]

Phys. Scr. (1)

M-L. Junttila, B. Stahlberg, “Investigation of the mode properties and stabilization of an internal mirror 1523 nm He–Ne laser,” Phys. Scr. 41, 667–668 (1990).
[Crossref]

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[Crossref]

Other (1)

J. A. Barnes, “Tables of bias functions, B1 and B2, for variances based on finite samples of processes with power law spectral densities,” Natl. Bur. Stand. Tech. Note 375 (U.S. Government Printing Office, Washington, D.C., 1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Optical schematics for a polarization-stabilized infrared He–Ne laser: (a) Dual-wavelength (1.15 and 3.39 μm) method. BS1, dichroic beam splitter; F1, antireflection-coated Si filter; RP, calcite Rochon prism; PD1, PD2, Si photodiodes. (b) Differentially chopped method. BS2, BS3, uncoated CaF2 beam splitters; P1, P2, dichroic calcite polarizers; F2, attenuating filter; M1, M2, mirrors; chopper (wheel chopper); F3, Ge or interference filter; PD3, InSb photodetector.

Fig. 2
Fig. 2

(a) Drift and (b) Allan variances of a dual-wavelength polarization-stabilized He–Ne laser at 3.39-μm that is beat against a methane-stabilized He–Ne laser.

Metrics