Abstract

Vibronically resolved laser photoacoustic spectra of I2 vapor have been recorded at room temperature in the presence and absence of atmospheric air in the 490–680 nm (20402–14700 cm−1) region for what is, to our knowledge, the first time. The vibrational bands belong to the B 3Π(Ou+) ← X 1g+ transition, but the underlying continuum also results from the 1Π1uX 1g+ and A 3Π1uX 1a∑g+ transitions. The mechanisms of photoacoustic signal generation are discussed by analyzing the photoacoustic intensity in light of Franck–Condon factors for the BX transition. Energy transfer to O2 caused by the photodissociation of I2 into 2P3/2 + 2P1/2 I atoms is observed in the presence of atmospheric air, and the predissociation of the B state has been observed for its vibrational levels v′ ~ 23–27.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Tellinghuisen, “Continuous absorption below the band convergence limit in the I2B ← X transition,” J. Chem. Phys. 59, 849–852 (1972).
    [CrossRef]
  2. J. C. Lehman, “Laser spectroscopy of small molecules” in Lecture Notes in Physics, S. Haroche, J. C. Pebay-Peyroula, T. W. Hänsch, S. E. Harris, eds. (Springer-Verlag, Berlin, 1975, Vol. 43, pp. 476–527.
    [CrossRef]
  3. W. R. Harshbarger, M. B. Robin, “The quenching of excited iodine atoms by oxygen molecules as studied by optoacoustic spectroscopy,” Chem. Phys. Lett. 21, 462–465 (1973).
    [CrossRef]
  4. E. E. Marinero, M. Stuke, “Doppler free optoacoustic spectroscopy,” Opt. Commun. 30, 349–350 (1979).
    [CrossRef]
  5. P. Venkateswarlu, D. Kumar, S. P. McGlynn, “Visible photoacoustic spectra of I2 and ICl molecules,” in Lasers and Applications, H. D. Bist, J. S. Goela, eds. (Tata-McGraw-Hill, New Delhi, 1984), pp. 89–105.
  6. P. Luc, “Molecular constants and Dunham expansion parameters describing the B–X system of iodine molecule,” J. Mol. Spectrosc. 80, 41–55 (1980).
    [CrossRef]
  7. S. Gertenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule de l’Iode (14 800–20 000cm−1) (CNRS, Paris, 1978).
  8. J. Tellinghuisen, “Intensity factors for the I2B–X band system,” J. Quant. Spectrosc. Radiat. Transfer 19, 149–161 (1978).
    [CrossRef]
  9. K. Ernst, M. Inguscio, “Unconventional techniques in laser spectroscopy,” Riv. Nuovo Cimento 11(2), 1–37 (1988).
    [CrossRef]
  10. J. Tellinghuisen, “Transition strength in the visible-infrared absorption spectrum of I2,” J. Chem. Phys. 76, 4736–4744 (1982).
    [CrossRef]
  11. T. W. Broadbent, A. B. Callear, “Quantum yield for the collisionally induced dissociation of excited I2B3Π(Ou+) to I(2P1/2) + I(2P3/2),” J. Chem. Soc. Faraday Trans. 2 68, 1367–1376 (1972).
    [CrossRef]
  12. I. D. Clark, R. P. Wayne, “The collisional deactivation of O2 (1Δg),” Chem. Phys. Lett. 3, 93–95 (1969).
    [CrossRef]
  13. A. Chutjian, Calculation of predissociation rates of B3Π(Ou+) state of I2,” J. Chem. Phys. 51, 5414–5419 (1969).
    [CrossRef]

1988 (1)

K. Ernst, M. Inguscio, “Unconventional techniques in laser spectroscopy,” Riv. Nuovo Cimento 11(2), 1–37 (1988).
[CrossRef]

1982 (1)

J. Tellinghuisen, “Transition strength in the visible-infrared absorption spectrum of I2,” J. Chem. Phys. 76, 4736–4744 (1982).
[CrossRef]

1980 (1)

P. Luc, “Molecular constants and Dunham expansion parameters describing the B–X system of iodine molecule,” J. Mol. Spectrosc. 80, 41–55 (1980).
[CrossRef]

1979 (1)

E. E. Marinero, M. Stuke, “Doppler free optoacoustic spectroscopy,” Opt. Commun. 30, 349–350 (1979).
[CrossRef]

1978 (1)

J. Tellinghuisen, “Intensity factors for the I2B–X band system,” J. Quant. Spectrosc. Radiat. Transfer 19, 149–161 (1978).
[CrossRef]

1973 (1)

W. R. Harshbarger, M. B. Robin, “The quenching of excited iodine atoms by oxygen molecules as studied by optoacoustic spectroscopy,” Chem. Phys. Lett. 21, 462–465 (1973).
[CrossRef]

1972 (2)

J. Tellinghuisen, “Continuous absorption below the band convergence limit in the I2B ← X transition,” J. Chem. Phys. 59, 849–852 (1972).
[CrossRef]

T. W. Broadbent, A. B. Callear, “Quantum yield for the collisionally induced dissociation of excited I2B3Π(Ou+) to I(2P1/2) + I(2P3/2),” J. Chem. Soc. Faraday Trans. 2 68, 1367–1376 (1972).
[CrossRef]

1969 (2)

I. D. Clark, R. P. Wayne, “The collisional deactivation of O2 (1Δg),” Chem. Phys. Lett. 3, 93–95 (1969).
[CrossRef]

A. Chutjian, Calculation of predissociation rates of B3Π(Ou+) state of I2,” J. Chem. Phys. 51, 5414–5419 (1969).
[CrossRef]

Broadbent, T. W.

T. W. Broadbent, A. B. Callear, “Quantum yield for the collisionally induced dissociation of excited I2B3Π(Ou+) to I(2P1/2) + I(2P3/2),” J. Chem. Soc. Faraday Trans. 2 68, 1367–1376 (1972).
[CrossRef]

Callear, A. B.

T. W. Broadbent, A. B. Callear, “Quantum yield for the collisionally induced dissociation of excited I2B3Π(Ou+) to I(2P1/2) + I(2P3/2),” J. Chem. Soc. Faraday Trans. 2 68, 1367–1376 (1972).
[CrossRef]

Chutjian, A.

A. Chutjian, Calculation of predissociation rates of B3Π(Ou+) state of I2,” J. Chem. Phys. 51, 5414–5419 (1969).
[CrossRef]

Clark, I. D.

I. D. Clark, R. P. Wayne, “The collisional deactivation of O2 (1Δg),” Chem. Phys. Lett. 3, 93–95 (1969).
[CrossRef]

Ernst, K.

K. Ernst, M. Inguscio, “Unconventional techniques in laser spectroscopy,” Riv. Nuovo Cimento 11(2), 1–37 (1988).
[CrossRef]

Gertenkorn, S.

S. Gertenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule de l’Iode (14 800–20 000cm−1) (CNRS, Paris, 1978).

Harshbarger, W. R.

W. R. Harshbarger, M. B. Robin, “The quenching of excited iodine atoms by oxygen molecules as studied by optoacoustic spectroscopy,” Chem. Phys. Lett. 21, 462–465 (1973).
[CrossRef]

Inguscio, M.

K. Ernst, M. Inguscio, “Unconventional techniques in laser spectroscopy,” Riv. Nuovo Cimento 11(2), 1–37 (1988).
[CrossRef]

Kumar, D.

P. Venkateswarlu, D. Kumar, S. P. McGlynn, “Visible photoacoustic spectra of I2 and ICl molecules,” in Lasers and Applications, H. D. Bist, J. S. Goela, eds. (Tata-McGraw-Hill, New Delhi, 1984), pp. 89–105.

Lehman, J. C.

J. C. Lehman, “Laser spectroscopy of small molecules” in Lecture Notes in Physics, S. Haroche, J. C. Pebay-Peyroula, T. W. Hänsch, S. E. Harris, eds. (Springer-Verlag, Berlin, 1975, Vol. 43, pp. 476–527.
[CrossRef]

Luc, P.

P. Luc, “Molecular constants and Dunham expansion parameters describing the B–X system of iodine molecule,” J. Mol. Spectrosc. 80, 41–55 (1980).
[CrossRef]

S. Gertenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule de l’Iode (14 800–20 000cm−1) (CNRS, Paris, 1978).

Marinero, E. E.

E. E. Marinero, M. Stuke, “Doppler free optoacoustic spectroscopy,” Opt. Commun. 30, 349–350 (1979).
[CrossRef]

McGlynn, S. P.

P. Venkateswarlu, D. Kumar, S. P. McGlynn, “Visible photoacoustic spectra of I2 and ICl molecules,” in Lasers and Applications, H. D. Bist, J. S. Goela, eds. (Tata-McGraw-Hill, New Delhi, 1984), pp. 89–105.

Robin, M. B.

W. R. Harshbarger, M. B. Robin, “The quenching of excited iodine atoms by oxygen molecules as studied by optoacoustic spectroscopy,” Chem. Phys. Lett. 21, 462–465 (1973).
[CrossRef]

Stuke, M.

E. E. Marinero, M. Stuke, “Doppler free optoacoustic spectroscopy,” Opt. Commun. 30, 349–350 (1979).
[CrossRef]

Tellinghuisen, J.

J. Tellinghuisen, “Transition strength in the visible-infrared absorption spectrum of I2,” J. Chem. Phys. 76, 4736–4744 (1982).
[CrossRef]

J. Tellinghuisen, “Intensity factors for the I2B–X band system,” J. Quant. Spectrosc. Radiat. Transfer 19, 149–161 (1978).
[CrossRef]

J. Tellinghuisen, “Continuous absorption below the band convergence limit in the I2B ← X transition,” J. Chem. Phys. 59, 849–852 (1972).
[CrossRef]

Venkateswarlu, P.

P. Venkateswarlu, D. Kumar, S. P. McGlynn, “Visible photoacoustic spectra of I2 and ICl molecules,” in Lasers and Applications, H. D. Bist, J. S. Goela, eds. (Tata-McGraw-Hill, New Delhi, 1984), pp. 89–105.

Wayne, R. P.

I. D. Clark, R. P. Wayne, “The collisional deactivation of O2 (1Δg),” Chem. Phys. Lett. 3, 93–95 (1969).
[CrossRef]

Chem. Phys. Lett. (2)

W. R. Harshbarger, M. B. Robin, “The quenching of excited iodine atoms by oxygen molecules as studied by optoacoustic spectroscopy,” Chem. Phys. Lett. 21, 462–465 (1973).
[CrossRef]

I. D. Clark, R. P. Wayne, “The collisional deactivation of O2 (1Δg),” Chem. Phys. Lett. 3, 93–95 (1969).
[CrossRef]

J. Chem. Phys. (3)

A. Chutjian, Calculation of predissociation rates of B3Π(Ou+) state of I2,” J. Chem. Phys. 51, 5414–5419 (1969).
[CrossRef]

J. Tellinghuisen, “Transition strength in the visible-infrared absorption spectrum of I2,” J. Chem. Phys. 76, 4736–4744 (1982).
[CrossRef]

J. Tellinghuisen, “Continuous absorption below the band convergence limit in the I2B ← X transition,” J. Chem. Phys. 59, 849–852 (1972).
[CrossRef]

J. Chem. Soc. Faraday Trans. 2 (1)

T. W. Broadbent, A. B. Callear, “Quantum yield for the collisionally induced dissociation of excited I2B3Π(Ou+) to I(2P1/2) + I(2P3/2),” J. Chem. Soc. Faraday Trans. 2 68, 1367–1376 (1972).
[CrossRef]

J. Mol. Spectrosc. (1)

P. Luc, “Molecular constants and Dunham expansion parameters describing the B–X system of iodine molecule,” J. Mol. Spectrosc. 80, 41–55 (1980).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. Tellinghuisen, “Intensity factors for the I2B–X band system,” J. Quant. Spectrosc. Radiat. Transfer 19, 149–161 (1978).
[CrossRef]

Opt. Commun. (1)

E. E. Marinero, M. Stuke, “Doppler free optoacoustic spectroscopy,” Opt. Commun. 30, 349–350 (1979).
[CrossRef]

Riv. Nuovo Cimento (1)

K. Ernst, M. Inguscio, “Unconventional techniques in laser spectroscopy,” Riv. Nuovo Cimento 11(2), 1–37 (1988).
[CrossRef]

Other (3)

S. Gertenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule de l’Iode (14 800–20 000cm−1) (CNRS, Paris, 1978).

P. Venkateswarlu, D. Kumar, S. P. McGlynn, “Visible photoacoustic spectra of I2 and ICl molecules,” in Lasers and Applications, H. D. Bist, J. S. Goela, eds. (Tata-McGraw-Hill, New Delhi, 1984), pp. 89–105.

J. C. Lehman, “Laser spectroscopy of small molecules” in Lecture Notes in Physics, S. Haroche, J. C. Pebay-Peyroula, T. W. Hänsch, S. E. Harris, eds. (Springer-Verlag, Berlin, 1975, Vol. 43, pp. 476–527.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup used for recording the photoacoustic spectra of the I2 vapor.

Fig. 2
Fig. 2

Normalized photoacoustic spectrum of I2 vapor in the region of 493–552 nm (20 292–18 113 cm−1) in air at (a) atmospheric pressure and (b) 15 Torr. (c) Normalized photoacoustic spectrum of I2 vapor in air at atmospheric pressure in the region of 552–680 nm (18 113–14 700 cm−1).

Fig. 3
Fig. 3

Variation of (a) radiative decay rate from Ref. 10 and (b) nonradiative decay rate in the presence of air at atmospheric pressure, with the vibrational quantum number in the B state of I2

Fig. 4
Fig. 4

Low-resolution photoacoustic spectrum of I2 at a vapor pressure of 0.37 Torr, from Ref. 3, (a) without O2 and (b) with O2 at 25 Torr.

Fig. 5
Fig. 5

Partial potential energy diagram of I2 showing electronic states involved in the visible photoacoustic spectrum.

Tables (1)

Tables Icon

Table 1 Assignments of Vibronic Bands in the I2 Visible (BX) Photoacoustic Spectrum in the Presence of Air at Atmospheric Pressurea

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I v v = Q v v exp ( - Δ E v / k T ) ,
H ( λ , t ) = W ( λ ) A n / ( A n + A r ) [ 1 - exp ( t / τ ) ] Δ E ,
p ( λ , t ) = H ( λ , t ) R / ( M C v V ) ,
I ( P 2 1 / 2 ) + O 2 ( Σ 3 g - ) + 284 cm - 1 I ( P 2 3 / 2 ) + O 2 ( Δ 1 ) .

Metrics