Abstract

Maintaining plasma uniformity is an essential requirement for successful x-ray laser designs. In this work we focus on a Z-pinch-driven neonlike krypton x-ray laser design for which we (1) investigate the role of initial mass loading in affecting plasma uniformity and gain and (2) show that there are advantages in terms of plasma uniformity to diluting a krypton plasma with a low-Z material such as helium. These results are obtained by using a one-dimensional radiation hydrodynamic model. The results of this study show that low-mass 100% krypton plasmas are optimal for achieving significant gain while maintaining plasma integrity. Diluting a krypton plasma with helium has the advantage of improving plasma uniformity, but it has the disadvantages of enhanced collisionality and line broadening, which are associated with the additional free electrons.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Krishnan, R. Nash, P. Le Pell, R. Rodenburg, “Krypton on krypton Z-pinch x-ray laser experiment,” Rep. PIT-87-02 (Physics International, San Leando, Calif., 1987).
  2. J. Davis, R. Clark, J. P. Apruzese, P. C. Kepple, “AZ-pinch neonlike x-ray laser,” IEEE Trans. Plasma Sci. 16, 482–490 (1988).
    [CrossRef]
  3. J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, T. W. Hussey, C. Deeney, R. R. Prasad, T. Nash, “Sodium–neon resonant photoexcitation soft x-ray laser experiments on Saturn,” in IEEE International Conference on Plasma Science (Institute of Electrical and Electronic Engineers, New York, 1990), p. 148.
  4. R. B. Spielman, M. K. Matzen, M. A. Palmer, P. B. Rand, T. W. Hussey, D. H. McDaniel, “Z-pinch implosions onto extremely low-density foam cylinders,” Appl. Phys. Lett. 47, 229–231 (1985).
    [CrossRef]
  5. F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987).
    [CrossRef]
  6. R. B. Spielman, Sandia National Laboratories, Albuquerque, N.M. 87185 (personal communication, 1991).
  7. T. W. Hussey, M. K. Matzen, N. F. Roderick, “Large-scale-length nonuniformities in gas puff implosions,” J. Appl. Phys. 59, 2677–2684 (1986).
    [CrossRef]
  8. R. G. Evans, “Radiation cooling instabilities in laser driven ablation,” Plasma Phys. Controlled Fusion 27, 751–759 (1985).
    [CrossRef]
  9. J. Von Neumann, R. D. Richtmyer, “A method for the numerical calculation of hydrodynamic shocks,” J. Appl. Phys. 21, 232–238 (1950).
    [CrossRef]
  10. S. I. Braginskii, “Transport processes in a plasma,” in Reviews of Plasma Physics, M. A. Leontovich ed. (Consultants Bureau, New York, 1965), Vol. 1, pp. 205–311.
  11. D. Duston, J. Davis, “Soft x-ray and x-ray ultraviolet radiation from high density aluminum plasmas,” Phys. Rev. A 23, 2602–2621 (1981).
    [CrossRef]
  12. D. R. Bates, A. E. Kingston, R. W. P. McWhirter, “Recombination between electrons and atomic ions,” Proc. R. Soc. London Ser. A 267, 297–312 (1962).
    [CrossRef]
  13. See, for example, J. Davis, “Effective gaunt factors for electron impact ionization of multiply-charged nitrogen and oxygen ions,” J. Quant. Spectrosc. Radiat. Transfer 14, 549–554 (1974); A. Burgess, H. P. Summers, D. M. Cochrane, R. W. P. McWhirter, “Cross-sections for ionization of positive ions by electron impact,” Mon. Not. R. Astron. Soc. 179, 275–292 (1977).
    [CrossRef]
  14. V. L. Jacobs, J. Davis, P. C. Kepple, M. Blaha, “The influence of autoionization accompanied by excitation on dielectronic recombination and ionization equilibrium,” Astrophys. J. 211, 605–616 (1977).
    [CrossRef]
  15. W. J. Karzas, B. Latter, “Electron radiative transitions in a coulomb field,” Astrophys. J. Suppl. Ser. 6, 167–212 (1961).
    [CrossRef]
  16. V. L. Jacobs, J. Davis, “Effects of collisions on level populations and dielectronic recombination rates of multiply charged ions,” Phys. Rev. A 18, 697–710 (1978).
    [CrossRef]
  17. J. Davis, P. C. Kepple, M. Blaha, “Electron impact excitation coefficients for laboratory and astrophysical plasmas,” J. Quant. Spectrosc. Radiat. Transfer 16, 1043–1055 (1977).
    [CrossRef]
  18. J. Bailey, A. Fisher, N. Rostoker, “Coupling of radiation and hydrodynamics,” J. Appl. Phys. 60, 1939–1945 (1986).
    [CrossRef]
  19. J. P. Apruzese, J. Davis, D. Duston, R. W. Clark, “Influence of Lyman-series fine structure opacity on the K-shell spectrum and level populations of low to medium-Z plasmas,” Phys. Rev. A 29, 246–253 (1984).
    [CrossRef]
  20. J. P. Apruzese, J. Davis, D. Duston, K. G. Whitney, “Direct solution of the equation of transfer using frequency—and angle—averaged photon escape probabilities with application to a multistage, multilevel aluminum plasma,” J. Quant. Spectrosc. Radiat. Transfer 23, 479–487 (1980).
    [CrossRef]
  21. D. Duston, R. W. Clark, J. Davis, J. P. Apruzese, “Radiation energetics of a laser-produced plasma,” Phys. Rev. A 27, 1441–1460 (1983).
    [CrossRef]
  22. R. W. Clark, J. Davis, F. L. Cochran, “Dynamics of imploding neon gas-puff plasmas,” Phys. Fluids 29, 1971–1978 (1986).
    [CrossRef]
  23. J. P. Apruzese, P. C. Kepple, J. Davis, J. Pender, “Recombination lasing in heliumlike silicon: a possible path to the water window,” IEEE Trans. Plasma Sci. 16, 529–533 (1988).
    [CrossRef]
  24. V. V. Sobelev, “The diffusion of Lα-radiation in nebulae and stellar envelopes,” Sov. Astron. 1, 678–689 (1957).
  25. A. I. Shestakov, D. C. Eder, “Escape probabilities in a cylindrically expanding medium,” J. Quant. Spectrosc. Radiat. Transfer 42, 483–498 (1989).
    [CrossRef]
  26. J. Katzenstein, “Optimum coupling of imploding loads to pulse generators,” J. Appl. Phys. 52, 676–680 (1981).
    [CrossRef]
  27. G. Barak, N. Rostoker, “Semihydrodynamic model for ion separation in a fast pinch,” Appl. Phys. Lett. 41, 918–920 (1982).
    [CrossRef]
  28. M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
    [CrossRef] [PubMed]
  29. D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
    [CrossRef] [PubMed]
  30. D. C. Eder, “Modeling of a cylindrically expanding hydrogen-like fluorine x-ray laser,” Phys. Fluids B 12, 2462–2469 (1989).
    [CrossRef]

1989

A. I. Shestakov, D. C. Eder, “Escape probabilities in a cylindrically expanding medium,” J. Quant. Spectrosc. Radiat. Transfer 42, 483–498 (1989).
[CrossRef]

D. C. Eder, “Modeling of a cylindrically expanding hydrogen-like fluorine x-ray laser,” Phys. Fluids B 12, 2462–2469 (1989).
[CrossRef]

1988

J. P. Apruzese, P. C. Kepple, J. Davis, J. Pender, “Recombination lasing in heliumlike silicon: a possible path to the water window,” IEEE Trans. Plasma Sci. 16, 529–533 (1988).
[CrossRef]

J. Davis, R. Clark, J. P. Apruzese, P. C. Kepple, “AZ-pinch neonlike x-ray laser,” IEEE Trans. Plasma Sci. 16, 482–490 (1988).
[CrossRef]

1987

F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987).
[CrossRef]

1986

T. W. Hussey, M. K. Matzen, N. F. Roderick, “Large-scale-length nonuniformities in gas puff implosions,” J. Appl. Phys. 59, 2677–2684 (1986).
[CrossRef]

J. Bailey, A. Fisher, N. Rostoker, “Coupling of radiation and hydrodynamics,” J. Appl. Phys. 60, 1939–1945 (1986).
[CrossRef]

R. W. Clark, J. Davis, F. L. Cochran, “Dynamics of imploding neon gas-puff plasmas,” Phys. Fluids 29, 1971–1978 (1986).
[CrossRef]

1985

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

R. G. Evans, “Radiation cooling instabilities in laser driven ablation,” Plasma Phys. Controlled Fusion 27, 751–759 (1985).
[CrossRef]

R. B. Spielman, M. K. Matzen, M. A. Palmer, P. B. Rand, T. W. Hussey, D. H. McDaniel, “Z-pinch implosions onto extremely low-density foam cylinders,” Appl. Phys. Lett. 47, 229–231 (1985).
[CrossRef]

1984

J. P. Apruzese, J. Davis, D. Duston, R. W. Clark, “Influence of Lyman-series fine structure opacity on the K-shell spectrum and level populations of low to medium-Z plasmas,” Phys. Rev. A 29, 246–253 (1984).
[CrossRef]

1983

D. Duston, R. W. Clark, J. Davis, J. P. Apruzese, “Radiation energetics of a laser-produced plasma,” Phys. Rev. A 27, 1441–1460 (1983).
[CrossRef]

1982

G. Barak, N. Rostoker, “Semihydrodynamic model for ion separation in a fast pinch,” Appl. Phys. Lett. 41, 918–920 (1982).
[CrossRef]

1981

J. Katzenstein, “Optimum coupling of imploding loads to pulse generators,” J. Appl. Phys. 52, 676–680 (1981).
[CrossRef]

D. Duston, J. Davis, “Soft x-ray and x-ray ultraviolet radiation from high density aluminum plasmas,” Phys. Rev. A 23, 2602–2621 (1981).
[CrossRef]

1980

J. P. Apruzese, J. Davis, D. Duston, K. G. Whitney, “Direct solution of the equation of transfer using frequency—and angle—averaged photon escape probabilities with application to a multistage, multilevel aluminum plasma,” J. Quant. Spectrosc. Radiat. Transfer 23, 479–487 (1980).
[CrossRef]

1978

V. L. Jacobs, J. Davis, “Effects of collisions on level populations and dielectronic recombination rates of multiply charged ions,” Phys. Rev. A 18, 697–710 (1978).
[CrossRef]

1977

J. Davis, P. C. Kepple, M. Blaha, “Electron impact excitation coefficients for laboratory and astrophysical plasmas,” J. Quant. Spectrosc. Radiat. Transfer 16, 1043–1055 (1977).
[CrossRef]

V. L. Jacobs, J. Davis, P. C. Kepple, M. Blaha, “The influence of autoionization accompanied by excitation on dielectronic recombination and ionization equilibrium,” Astrophys. J. 211, 605–616 (1977).
[CrossRef]

1974

See, for example, J. Davis, “Effective gaunt factors for electron impact ionization of multiply-charged nitrogen and oxygen ions,” J. Quant. Spectrosc. Radiat. Transfer 14, 549–554 (1974); A. Burgess, H. P. Summers, D. M. Cochrane, R. W. P. McWhirter, “Cross-sections for ionization of positive ions by electron impact,” Mon. Not. R. Astron. Soc. 179, 275–292 (1977).
[CrossRef]

1962

D. R. Bates, A. E. Kingston, R. W. P. McWhirter, “Recombination between electrons and atomic ions,” Proc. R. Soc. London Ser. A 267, 297–312 (1962).
[CrossRef]

1961

W. J. Karzas, B. Latter, “Electron radiative transitions in a coulomb field,” Astrophys. J. Suppl. Ser. 6, 167–212 (1961).
[CrossRef]

1957

V. V. Sobelev, “The diffusion of Lα-radiation in nebulae and stellar envelopes,” Sov. Astron. 1, 678–689 (1957).

1950

J. Von Neumann, R. D. Richtmyer, “A method for the numerical calculation of hydrodynamic shocks,” J. Appl. Phys. 21, 232–238 (1950).
[CrossRef]

Apruzese, J. P.

J. Davis, R. Clark, J. P. Apruzese, P. C. Kepple, “AZ-pinch neonlike x-ray laser,” IEEE Trans. Plasma Sci. 16, 482–490 (1988).
[CrossRef]

J. P. Apruzese, P. C. Kepple, J. Davis, J. Pender, “Recombination lasing in heliumlike silicon: a possible path to the water window,” IEEE Trans. Plasma Sci. 16, 529–533 (1988).
[CrossRef]

J. P. Apruzese, J. Davis, D. Duston, R. W. Clark, “Influence of Lyman-series fine structure opacity on the K-shell spectrum and level populations of low to medium-Z plasmas,” Phys. Rev. A 29, 246–253 (1984).
[CrossRef]

D. Duston, R. W. Clark, J. Davis, J. P. Apruzese, “Radiation energetics of a laser-produced plasma,” Phys. Rev. A 27, 1441–1460 (1983).
[CrossRef]

J. P. Apruzese, J. Davis, D. Duston, K. G. Whitney, “Direct solution of the equation of transfer using frequency—and angle—averaged photon escape probabilities with application to a multistage, multilevel aluminum plasma,” J. Quant. Spectrosc. Radiat. Transfer 23, 479–487 (1980).
[CrossRef]

Bailey, J.

J. Bailey, A. Fisher, N. Rostoker, “Coupling of radiation and hydrodynamics,” J. Appl. Phys. 60, 1939–1945 (1986).
[CrossRef]

Barak, G.

G. Barak, N. Rostoker, “Semihydrodynamic model for ion separation in a fast pinch,” Appl. Phys. Lett. 41, 918–920 (1982).
[CrossRef]

Bates, D. R.

D. R. Bates, A. E. Kingston, R. W. P. McWhirter, “Recombination between electrons and atomic ions,” Proc. R. Soc. London Ser. A 267, 297–312 (1962).
[CrossRef]

Blaha, M.

V. L. Jacobs, J. Davis, P. C. Kepple, M. Blaha, “The influence of autoionization accompanied by excitation on dielectronic recombination and ionization equilibrium,” Astrophys. J. 211, 605–616 (1977).
[CrossRef]

J. Davis, P. C. Kepple, M. Blaha, “Electron impact excitation coefficients for laboratory and astrophysical plasmas,” J. Quant. Spectrosc. Radiat. Transfer 16, 1043–1055 (1977).
[CrossRef]

Braginskii, S. I.

S. I. Braginskii, “Transport processes in a plasma,” in Reviews of Plasma Physics, M. A. Leontovich ed. (Consultants Bureau, New York, 1965), Vol. 1, pp. 205–311.

Busch, G. E.

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

Campbell, E. M.

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Ceglio, N. M.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Charatis, G.

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

Clark, R.

J. Davis, R. Clark, J. P. Apruzese, P. C. Kepple, “AZ-pinch neonlike x-ray laser,” IEEE Trans. Plasma Sci. 16, 482–490 (1988).
[CrossRef]

Clark, R. W.

R. W. Clark, J. Davis, F. L. Cochran, “Dynamics of imploding neon gas-puff plasmas,” Phys. Fluids 29, 1971–1978 (1986).
[CrossRef]

J. P. Apruzese, J. Davis, D. Duston, R. W. Clark, “Influence of Lyman-series fine structure opacity on the K-shell spectrum and level populations of low to medium-Z plasmas,” Phys. Rev. A 29, 246–253 (1984).
[CrossRef]

D. Duston, R. W. Clark, J. Davis, J. P. Apruzese, “Radiation energetics of a laser-produced plasma,” Phys. Rev. A 27, 1441–1460 (1983).
[CrossRef]

Cochran, F. L.

R. W. Clark, J. Davis, F. L. Cochran, “Dynamics of imploding neon gas-puff plasmas,” Phys. Fluids 29, 1971–1978 (1986).
[CrossRef]

Davis, J.

J. P. Apruzese, P. C. Kepple, J. Davis, J. Pender, “Recombination lasing in heliumlike silicon: a possible path to the water window,” IEEE Trans. Plasma Sci. 16, 529–533 (1988).
[CrossRef]

J. Davis, R. Clark, J. P. Apruzese, P. C. Kepple, “AZ-pinch neonlike x-ray laser,” IEEE Trans. Plasma Sci. 16, 482–490 (1988).
[CrossRef]

R. W. Clark, J. Davis, F. L. Cochran, “Dynamics of imploding neon gas-puff plasmas,” Phys. Fluids 29, 1971–1978 (1986).
[CrossRef]

J. P. Apruzese, J. Davis, D. Duston, R. W. Clark, “Influence of Lyman-series fine structure opacity on the K-shell spectrum and level populations of low to medium-Z plasmas,” Phys. Rev. A 29, 246–253 (1984).
[CrossRef]

D. Duston, R. W. Clark, J. Davis, J. P. Apruzese, “Radiation energetics of a laser-produced plasma,” Phys. Rev. A 27, 1441–1460 (1983).
[CrossRef]

D. Duston, J. Davis, “Soft x-ray and x-ray ultraviolet radiation from high density aluminum plasmas,” Phys. Rev. A 23, 2602–2621 (1981).
[CrossRef]

J. P. Apruzese, J. Davis, D. Duston, K. G. Whitney, “Direct solution of the equation of transfer using frequency—and angle—averaged photon escape probabilities with application to a multistage, multilevel aluminum plasma,” J. Quant. Spectrosc. Radiat. Transfer 23, 479–487 (1980).
[CrossRef]

V. L. Jacobs, J. Davis, “Effects of collisions on level populations and dielectronic recombination rates of multiply charged ions,” Phys. Rev. A 18, 697–710 (1978).
[CrossRef]

J. Davis, P. C. Kepple, M. Blaha, “Electron impact excitation coefficients for laboratory and astrophysical plasmas,” J. Quant. Spectrosc. Radiat. Transfer 16, 1043–1055 (1977).
[CrossRef]

V. L. Jacobs, J. Davis, P. C. Kepple, M. Blaha, “The influence of autoionization accompanied by excitation on dielectronic recombination and ionization equilibrium,” Astrophys. J. 211, 605–616 (1977).
[CrossRef]

See, for example, J. Davis, “Effective gaunt factors for electron impact ionization of multiply-charged nitrogen and oxygen ions,” J. Quant. Spectrosc. Radiat. Transfer 14, 549–554 (1974); A. Burgess, H. P. Summers, D. M. Cochrane, R. W. P. McWhirter, “Cross-sections for ionization of positive ions by electron impact,” Mon. Not. R. Astron. Soc. 179, 275–292 (1977).
[CrossRef]

Deeney, C.

J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, T. W. Hussey, C. Deeney, R. R. Prasad, T. Nash, “Sodium–neon resonant photoexcitation soft x-ray laser experiments on Saturn,” in IEEE International Conference on Plasma Science (Institute of Electrical and Electronic Engineers, New York, 1990), p. 148.

Duston, D.

J. P. Apruzese, J. Davis, D. Duston, R. W. Clark, “Influence of Lyman-series fine structure opacity on the K-shell spectrum and level populations of low to medium-Z plasmas,” Phys. Rev. A 29, 246–253 (1984).
[CrossRef]

D. Duston, R. W. Clark, J. Davis, J. P. Apruzese, “Radiation energetics of a laser-produced plasma,” Phys. Rev. A 27, 1441–1460 (1983).
[CrossRef]

D. Duston, J. Davis, “Soft x-ray and x-ray ultraviolet radiation from high density aluminum plasmas,” Phys. Rev. A 23, 2602–2621 (1981).
[CrossRef]

J. P. Apruzese, J. Davis, D. Duston, K. G. Whitney, “Direct solution of the equation of transfer using frequency—and angle—averaged photon escape probabilities with application to a multistage, multilevel aluminum plasma,” J. Quant. Spectrosc. Radiat. Transfer 23, 479–487 (1980).
[CrossRef]

Eckart, M. J.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Eder, D. C.

A. I. Shestakov, D. C. Eder, “Escape probabilities in a cylindrically expanding medium,” J. Quant. Spectrosc. Radiat. Transfer 42, 483–498 (1989).
[CrossRef]

D. C. Eder, “Modeling of a cylindrically expanding hydrogen-like fluorine x-ray laser,” Phys. Fluids B 12, 2462–2469 (1989).
[CrossRef]

Evans, R. G.

R. G. Evans, “Radiation cooling instabilities in laser driven ablation,” Plasma Phys. Controlled Fusion 27, 751–759 (1985).
[CrossRef]

Felber, F. S.

F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987).
[CrossRef]

Fisher, A.

F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987).
[CrossRef]

J. Bailey, A. Fisher, N. Rostoker, “Coupling of radiation and hydrodynamics,” J. Appl. Phys. 60, 1939–1945 (1986).
[CrossRef]

Fowler, C. M.

F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987).
[CrossRef]

Hagelstein, P. L.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

Hatcher, C. W.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Hawryluk, A. M.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Hazi, A. U.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

Hussey, T. W.

T. W. Hussey, M. K. Matzen, N. F. Roderick, “Large-scale-length nonuniformities in gas puff implosions,” J. Appl. Phys. 59, 2677–2684 (1986).
[CrossRef]

R. B. Spielman, M. K. Matzen, M. A. Palmer, P. B. Rand, T. W. Hussey, D. H. McDaniel, “Z-pinch implosions onto extremely low-density foam cylinders,” Appl. Phys. Lett. 47, 229–231 (1985).
[CrossRef]

J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, T. W. Hussey, C. Deeney, R. R. Prasad, T. Nash, “Sodium–neon resonant photoexcitation soft x-ray laser experiments on Saturn,” in IEEE International Conference on Plasma Science (Institute of Electrical and Electronic Engineers, New York, 1990), p. 148.

Jacobs, V. L.

V. L. Jacobs, J. Davis, “Effects of collisions on level populations and dielectronic recombination rates of multiply charged ions,” Phys. Rev. A 18, 697–710 (1978).
[CrossRef]

V. L. Jacobs, J. Davis, P. C. Kepple, M. Blaha, “The influence of autoionization accompanied by excitation on dielectronic recombination and ionization equilibrium,” Astrophys. J. 211, 605–616 (1977).
[CrossRef]

Karzas, W. J.

W. J. Karzas, B. Latter, “Electron radiative transitions in a coulomb field,” Astrophys. J. Suppl. Ser. 6, 167–212 (1961).
[CrossRef]

Katzenstein, J.

J. Katzenstein, “Optimum coupling of imploding loads to pulse generators,” J. Appl. Phys. 52, 676–680 (1981).
[CrossRef]

Kauffman, R. L.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Kepple, P. C.

J. Davis, R. Clark, J. P. Apruzese, P. C. Kepple, “AZ-pinch neonlike x-ray laser,” IEEE Trans. Plasma Sci. 16, 482–490 (1988).
[CrossRef]

J. P. Apruzese, P. C. Kepple, J. Davis, J. Pender, “Recombination lasing in heliumlike silicon: a possible path to the water window,” IEEE Trans. Plasma Sci. 16, 529–533 (1988).
[CrossRef]

J. Davis, P. C. Kepple, M. Blaha, “Electron impact excitation coefficients for laboratory and astrophysical plasmas,” J. Quant. Spectrosc. Radiat. Transfer 16, 1043–1055 (1977).
[CrossRef]

V. L. Jacobs, J. Davis, P. C. Kepple, M. Blaha, “The influence of autoionization accompanied by excitation on dielectronic recombination and ionization equilibrium,” Astrophys. J. 211, 605–616 (1977).
[CrossRef]

Kingston, A. E.

D. R. Bates, A. E. Kingston, R. W. P. McWhirter, “Recombination between electrons and atomic ions,” Proc. R. Soc. London Ser. A 267, 297–312 (1962).
[CrossRef]

Krishnan, M.

M. Krishnan, R. Nash, P. Le Pell, R. Rodenburg, “Krypton on krypton Z-pinch x-ray laser experiment,” Rep. PIT-87-02 (Physics International, San Leando, Calif., 1987).

Latter, B.

W. J. Karzas, B. Latter, “Electron radiative transitions in a coulomb field,” Astrophys. J. Suppl. Ser. 6, 167–212 (1961).
[CrossRef]

Le Pell, P.

M. Krishnan, R. Nash, P. Le Pell, R. Rodenburg, “Krypton on krypton Z-pinch x-ray laser experiment,” Rep. PIT-87-02 (Physics International, San Leando, Calif., 1987).

Lee, R. W.

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

Liberman, M. A.

F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987).
[CrossRef]

MacGowan, B.

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

MacGowan, B. J.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Matthews, D. L.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

Matzen, M. K.

T. W. Hussey, M. K. Matzen, N. F. Roderick, “Large-scale-length nonuniformities in gas puff implosions,” J. Appl. Phys. 59, 2677–2684 (1986).
[CrossRef]

R. B. Spielman, M. K. Matzen, M. A. Palmer, P. B. Rand, T. W. Hussey, D. H. McDaniel, “Z-pinch implosions onto extremely low-density foam cylinders,” Appl. Phys. Lett. 47, 229–231 (1985).
[CrossRef]

J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, T. W. Hussey, C. Deeney, R. R. Prasad, T. Nash, “Sodium–neon resonant photoexcitation soft x-ray laser experiments on Saturn,” in IEEE International Conference on Plasma Science (Institute of Electrical and Electronic Engineers, New York, 1990), p. 148.

McDaniel, D. H.

R. B. Spielman, M. K. Matzen, M. A. Palmer, P. B. Rand, T. W. Hussey, D. H. McDaniel, “Z-pinch implosions onto extremely low-density foam cylinders,” Appl. Phys. Lett. 47, 229–231 (1985).
[CrossRef]

McGuire, E. J.

J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, T. W. Hussey, C. Deeney, R. R. Prasad, T. Nash, “Sodium–neon resonant photoexcitation soft x-ray laser experiments on Saturn,” in IEEE International Conference on Plasma Science (Institute of Electrical and Electronic Engineers, New York, 1990), p. 148.

McWhirter, R. W. P.

D. R. Bates, A. E. Kingston, R. W. P. McWhirter, “Recombination between electrons and atomic ions,” Proc. R. Soc. London Ser. A 267, 297–312 (1962).
[CrossRef]

Medecki, H.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Nash, R.

M. Krishnan, R. Nash, P. Le Pell, R. Rodenburg, “Krypton on krypton Z-pinch x-ray laser experiment,” Rep. PIT-87-02 (Physics International, San Leando, Calif., 1987).

Nash, T.

J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, T. W. Hussey, C. Deeney, R. R. Prasad, T. Nash, “Sodium–neon resonant photoexcitation soft x-ray laser experiments on Saturn,” in IEEE International Conference on Plasma Science (Institute of Electrical and Electronic Engineers, New York, 1990), p. 148.

Palmer, M. A.

R. B. Spielman, M. K. Matzen, M. A. Palmer, P. B. Rand, T. W. Hussey, D. H. McDaniel, “Z-pinch implosions onto extremely low-density foam cylinders,” Appl. Phys. Lett. 47, 229–231 (1985).
[CrossRef]

Pender, J.

J. P. Apruzese, P. C. Kepple, J. Davis, J. Pender, “Recombination lasing in heliumlike silicon: a possible path to the water window,” IEEE Trans. Plasma Sci. 16, 529–533 (1988).
[CrossRef]

Pleasance, L. D.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Porter, J. L.

J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, T. W. Hussey, C. Deeney, R. R. Prasad, T. Nash, “Sodium–neon resonant photoexcitation soft x-ray laser experiments on Saturn,” in IEEE International Conference on Plasma Science (Institute of Electrical and Electronic Engineers, New York, 1990), p. 148.

Prasad, R. R.

J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, T. W. Hussey, C. Deeney, R. R. Prasad, T. Nash, “Sodium–neon resonant photoexcitation soft x-ray laser experiments on Saturn,” in IEEE International Conference on Plasma Science (Institute of Electrical and Electronic Engineers, New York, 1990), p. 148.

Rahman, H. U.

F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987).
[CrossRef]

Rambach, G.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Rand, P. B.

R. B. Spielman, M. K. Matzen, M. A. Palmer, P. B. Rand, T. W. Hussey, D. H. McDaniel, “Z-pinch implosions onto extremely low-density foam cylinders,” Appl. Phys. Lett. 47, 229–231 (1985).
[CrossRef]

Richtmyer, R. D.

J. Von Neumann, R. D. Richtmyer, “A method for the numerical calculation of hydrodynamic shocks,” J. Appl. Phys. 21, 232–238 (1950).
[CrossRef]

Rockett, P. D.

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

Rodenburg, R.

M. Krishnan, R. Nash, P. Le Pell, R. Rodenburg, “Krypton on krypton Z-pinch x-ray laser experiment,” Rep. PIT-87-02 (Physics International, San Leando, Calif., 1987).

Roderick, N. F.

T. W. Hussey, M. K. Matzen, N. F. Roderick, “Large-scale-length nonuniformities in gas puff implosions,” J. Appl. Phys. 59, 2677–2684 (1986).
[CrossRef]

Rosen, M. D.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

Rostoker, N.

J. Bailey, A. Fisher, N. Rostoker, “Coupling of radiation and hydrodynamics,” J. Appl. Phys. 60, 1939–1945 (1986).
[CrossRef]

G. Barak, N. Rostoker, “Semihydrodynamic model for ion separation in a fast pinch,” Appl. Phys. Lett. 41, 918–920 (1982).
[CrossRef]

Scofield, J. H.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Shepard, C. L.

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

Shestakov, A. I.

A. I. Shestakov, D. C. Eder, “Escape probabilities in a cylindrically expanding medium,” J. Quant. Spectrosc. Radiat. Transfer 42, 483–498 (1989).
[CrossRef]

Sobelev, V. V.

V. V. Sobelev, “The diffusion of Lα-radiation in nebulae and stellar envelopes,” Sov. Astron. 1, 678–689 (1957).

Spielman, R. B.

R. B. Spielman, M. K. Matzen, M. A. Palmer, P. B. Rand, T. W. Hussey, D. H. McDaniel, “Z-pinch implosions onto extremely low-density foam cylinders,” Appl. Phys. Lett. 47, 229–231 (1985).
[CrossRef]

J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, T. W. Hussey, C. Deeney, R. R. Prasad, T. Nash, “Sodium–neon resonant photoexcitation soft x-ray laser experiments on Saturn,” in IEEE International Conference on Plasma Science (Institute of Electrical and Electronic Engineers, New York, 1990), p. 148.

R. B. Spielman, Sandia National Laboratories, Albuquerque, N.M. 87185 (personal communication, 1991).

Stone, G.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Trebes, J. E.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Turner, R. E.

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

Velikovich, A. L.

F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987).
[CrossRef]

Von Neumann, J.

J. Von Neumann, R. D. Richtmyer, “A method for the numerical calculation of hydrodynamic shocks,” J. Appl. Phys. 21, 232–238 (1950).
[CrossRef]

Weaver, T. A.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Wessel, F. J.

F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987).
[CrossRef]

Whitney, K. G.

J. P. Apruzese, J. Davis, D. Duston, K. G. Whitney, “Direct solution of the equation of transfer using frequency—and angle—averaged photon escape probabilities with application to a multistage, multilevel aluminum plasma,” J. Quant. Spectrosc. Radiat. Transfer 23, 479–487 (1980).
[CrossRef]

Whitten, B. L.

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

Wild, N. C.

F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987).
[CrossRef]

Appl. Phys. Lett.

R. B. Spielman, M. K. Matzen, M. A. Palmer, P. B. Rand, T. W. Hussey, D. H. McDaniel, “Z-pinch implosions onto extremely low-density foam cylinders,” Appl. Phys. Lett. 47, 229–231 (1985).
[CrossRef]

G. Barak, N. Rostoker, “Semihydrodynamic model for ion separation in a fast pinch,” Appl. Phys. Lett. 41, 918–920 (1982).
[CrossRef]

Astrophys. J.

V. L. Jacobs, J. Davis, P. C. Kepple, M. Blaha, “The influence of autoionization accompanied by excitation on dielectronic recombination and ionization equilibrium,” Astrophys. J. 211, 605–616 (1977).
[CrossRef]

Astrophys. J. Suppl. Ser.

W. J. Karzas, B. Latter, “Electron radiative transitions in a coulomb field,” Astrophys. J. Suppl. Ser. 6, 167–212 (1961).
[CrossRef]

IEEE Trans. Plasma Sci.

J. Davis, R. Clark, J. P. Apruzese, P. C. Kepple, “AZ-pinch neonlike x-ray laser,” IEEE Trans. Plasma Sci. 16, 482–490 (1988).
[CrossRef]

J. P. Apruzese, P. C. Kepple, J. Davis, J. Pender, “Recombination lasing in heliumlike silicon: a possible path to the water window,” IEEE Trans. Plasma Sci. 16, 529–533 (1988).
[CrossRef]

J. Appl. Phys.

J. Katzenstein, “Optimum coupling of imploding loads to pulse generators,” J. Appl. Phys. 52, 676–680 (1981).
[CrossRef]

T. W. Hussey, M. K. Matzen, N. F. Roderick, “Large-scale-length nonuniformities in gas puff implosions,” J. Appl. Phys. 59, 2677–2684 (1986).
[CrossRef]

J. Von Neumann, R. D. Richtmyer, “A method for the numerical calculation of hydrodynamic shocks,” J. Appl. Phys. 21, 232–238 (1950).
[CrossRef]

J. Bailey, A. Fisher, N. Rostoker, “Coupling of radiation and hydrodynamics,” J. Appl. Phys. 60, 1939–1945 (1986).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

See, for example, J. Davis, “Effective gaunt factors for electron impact ionization of multiply-charged nitrogen and oxygen ions,” J. Quant. Spectrosc. Radiat. Transfer 14, 549–554 (1974); A. Burgess, H. P. Summers, D. M. Cochrane, R. W. P. McWhirter, “Cross-sections for ionization of positive ions by electron impact,” Mon. Not. R. Astron. Soc. 179, 275–292 (1977).
[CrossRef]

A. I. Shestakov, D. C. Eder, “Escape probabilities in a cylindrically expanding medium,” J. Quant. Spectrosc. Radiat. Transfer 42, 483–498 (1989).
[CrossRef]

J. P. Apruzese, J. Davis, D. Duston, K. G. Whitney, “Direct solution of the equation of transfer using frequency—and angle—averaged photon escape probabilities with application to a multistage, multilevel aluminum plasma,” J. Quant. Spectrosc. Radiat. Transfer 23, 479–487 (1980).
[CrossRef]

J. Davis, P. C. Kepple, M. Blaha, “Electron impact excitation coefficients for laboratory and astrophysical plasmas,” J. Quant. Spectrosc. Radiat. Transfer 16, 1043–1055 (1977).
[CrossRef]

Lasers Part. Beams

F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987).
[CrossRef]

Phys. Fluids

R. W. Clark, J. Davis, F. L. Cochran, “Dynamics of imploding neon gas-puff plasmas,” Phys. Fluids 29, 1971–1978 (1986).
[CrossRef]

Phys. Fluids B

D. C. Eder, “Modeling of a cylindrically expanding hydrogen-like fluorine x-ray laser,” Phys. Fluids B 12, 2462–2469 (1989).
[CrossRef]

Phys. Rev. A

D. Duston, R. W. Clark, J. Davis, J. P. Apruzese, “Radiation energetics of a laser-produced plasma,” Phys. Rev. A 27, 1441–1460 (1983).
[CrossRef]

D. Duston, J. Davis, “Soft x-ray and x-ray ultraviolet radiation from high density aluminum plasmas,” Phys. Rev. A 23, 2602–2621 (1981).
[CrossRef]

J. P. Apruzese, J. Davis, D. Duston, R. W. Clark, “Influence of Lyman-series fine structure opacity on the K-shell spectrum and level populations of low to medium-Z plasmas,” Phys. Rev. A 29, 246–253 (1984).
[CrossRef]

V. L. Jacobs, J. Davis, “Effects of collisions on level populations and dielectronic recombination rates of multiply charged ions,” Phys. Rev. A 18, 697–710 (1978).
[CrossRef]

Phys. Rev. Lett.

M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985).
[CrossRef] [PubMed]

D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985).
[CrossRef] [PubMed]

Plasma Phys. Controlled Fusion

R. G. Evans, “Radiation cooling instabilities in laser driven ablation,” Plasma Phys. Controlled Fusion 27, 751–759 (1985).
[CrossRef]

Proc. R. Soc. London Ser. A

D. R. Bates, A. E. Kingston, R. W. P. McWhirter, “Recombination between electrons and atomic ions,” Proc. R. Soc. London Ser. A 267, 297–312 (1962).
[CrossRef]

Sov. Astron.

V. V. Sobelev, “The diffusion of Lα-radiation in nebulae and stellar envelopes,” Sov. Astron. 1, 678–689 (1957).

Other

M. Krishnan, R. Nash, P. Le Pell, R. Rodenburg, “Krypton on krypton Z-pinch x-ray laser experiment,” Rep. PIT-87-02 (Physics International, San Leando, Calif., 1987).

S. I. Braginskii, “Transport processes in a plasma,” in Reviews of Plasma Physics, M. A. Leontovich ed. (Consultants Bureau, New York, 1965), Vol. 1, pp. 205–311.

R. B. Spielman, Sandia National Laboratories, Albuquerque, N.M. 87185 (personal communication, 1991).

J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, T. W. Hussey, C. Deeney, R. R. Prasad, T. Nash, “Sodium–neon resonant photoexcitation soft x-ray laser experiments on Saturn,” in IEEE International Conference on Plasma Science (Institute of Electrical and Electronic Engineers, New York, 1990), p. 148.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Krypton-ion density as a function of time and radial position during the stagnation phase of the 30-μg/cm, 100% krypton implosion. The initial implosion velocity is 4 × 107 cm/s.

Fig. 2
Fig. 2

Electron temperature as a function of time and radial position during the stagnation phase of the 30-μg/cm, 100% krypton implosion. The initial implosion velocity is 4 × 107 cm/s.

Fig. 3
Fig. 3

Krypton-ion density as a function of time and radial position during the stagnation phase of the 100-μg/cm, 100% krypton implosion. The initial implosion velocity is 4 × 107 cm/s.

Fig. 4
Fig. 4

Electron temperature as a function of time and radial position during the stagnation phase of the 100-μg/cm, 100% krypton implosion. The initial implosion velocity is 4 × 107 cm/s.

Fig. 5
Fig. 5

Krypton-ion density as a function of time and radial position during the stagnation phase of the 200-μg/cm, 100% krypton implosion. The initial implosion velocity is 4 × 107 cm/s.

Fig. 6
Fig. 6

Electron temperature as a function of time and radial position during the stagnation phase of the 200-μg/cm, 100% krypton implosion. The initial implosion velocityis 4 × 107 cm/s.

Fig. 7
Fig. 7

Krypton-ion density as a function of time and radial position during the stagnation phase of the 200-μg/cm, 98% helium, 2% krypton implosion. The initial implosion velocity is 4 × 107 cm/s.

Fig. 8
Fig. 8

Electron temperature as a function of time and radial position during the stagnation phase of the 30-μg/cm, 98% helium, 2% krypton implosion. The initial implosion velocity is 4 × 107 cm/s.

Fig. 9
Fig. 9

Radiated energy per unit mass as a function of time for the different mass loadings and helium–krypton mixtures. All the initial implosion velocities are 4 × 107 cm/s.

Fig. 10
Fig. 10

Energy level diagram for neonlike krypton.

Fig. 11
Fig. 11

Gain contours for the 30- and 60-μg/cm, 100% krypton simulations. The gain is 3 cm−1 or larger in the interior of each curve for the 3p–3s (J = 0–1) transition at 172 Å. The initial implosion velocities are 4 × 107 cm/s.

Fig. 12
Fig. 12

Gain contours for the 100- and 200-μg/cm, 100% krypton simulations. The gain is 3 cm−1 or larger in the interior of each curve for the 3p–3s (J = 0–1) transition at 172 Å. The initial implosion velocities are 4 × 107 cm/s. The black region is where the gain is in excess of 10 cm−1.

Fig. 13
Fig. 13

Gain contours for the 30- and 200-μg/cm, 100% krypton simulations. The gain is 2 cm−1 or larger in the interior of each curve for the 3p–3s (J = 2−1) transition at 186 Å. The initial implosion velocities are 4 × 107 cm/s.

Fig. 14
Fig. 14

Optically thin gain contours for the 30- and 200-μg/cm, 100% krypton simulations. The 3p–3s (J = 2−1) 186-Å gain is 2 cm−1 or the larger interior of each curve. The initial implosion velocities are 4 × 107 cm/s.

Fig. 15
Fig. 15

Optically thin gain contours as a function of the krypton-ion density and electron temperature for different mixtures of helium–krypton. The 3p–3s (J = 0–1) 172-Å gain is 2 cm−1 or larger to the right (interior) of each curve.

Fig. 16
Fig. 16

Krypton-ion density as a function of time and radial position during the stagnation phase of the 200-μg/cm, 98% helium, 2% krypton implosion. The initial implosion velocity is 5 × 107 cm/s.

Fig. 17
Fig. 17

Electron temperature as a function of time and radial position during the stagnation phase of the 200-μg/cm, 98% helium, 2% krypton implosion. The initial implosion velocity is 5 × 107 cm/s.

Fig. 18
Fig. 18

Krypton-ion density as a function of time and radial position during the stagnation phase of the 200-μg/cm, 100% krypton implosion. The initial implosion velocity is 5 × 107 cm/s.

Fig. 19
Fig. 19

Electron temperature as a function of time and radial position during the stagnation phase of the 200-μg/cm, 100% krypton implosion. The initial implosion velocity is 5 × 107 cm/s.

Fig. 20
Fig. 20

Gain contours for different helium–krypton 200-μg/cm simulations. The gain is 1 cm−1 or larger in the interior of each curve for the 3p–3s (J = 0–1) transition at 172 Å.

Fig. 21
Fig. 21

Gain contours for different helium–krypton 200-μg/cm simulations. The gain is 2 cm−1 or larger in the interior of each curve for the 3p–3s (J = 0–1) transition at 172 Å. The initial implosion velocities are 5 × 107 cm/s.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d V d t = V r δ δ r ( r u ) ;
d u d t = - V δ P δ r - V r δ δ r ( r Q ) ;
d E e d t = - P e d V d t + V r δ δ r ( r K e δ T e δ r ) + R + 2 ω c ( T i - T e ) ,
d E i d t = - P i d V d t + V r δ δ r ( r K i δ T i δ r ) - V Q δ u δ r - 2 ω c ( T i - T e ) .
P e = 2 3 ( E e - E z ) / V ,
P i = 2 3 E i / V ,

Metrics