Abstract

Analysis of infrared images of spatial beats between two discrete modes in a single waveguide is shown to provide a useful consistency check on the thicknesses and refractive indices of the dielectric layers.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Okamura, S. Yoshinaka, S. Yamamoto, “Measuring mode propagation losses in integrated optical waveguides: a simple method,” Appl. Opt. 22, 3892–3894 (1983).
    [CrossRef] [PubMed]
  2. C. H. Henry, B. H. Verbeek, “Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis,” IEEE J. Lightwave Technol. 7, 308–313 (1989).
    [CrossRef]
  3. D. J. Vezzetti, M. Munowitz, “Analysis of finite rib waveguides by matrix methods,” IEEE J. Lightwave Technol. 8, 1228–1234 (1990).
    [CrossRef]
  4. M. Munowitz, D. J. Vezzetti, “Lateral confinement in generalized strip-loaded optical waveguides,” J. Appl. Phys. 68, 5375–5377 (1990).
    [CrossRef]
  5. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).
  6. D. W. Jenkins, “Optical constants of AlxGa1−xAs,” J. Appl. Phys. 68, 1848–1853 (1990).
    [CrossRef]

1990 (3)

D. J. Vezzetti, M. Munowitz, “Analysis of finite rib waveguides by matrix methods,” IEEE J. Lightwave Technol. 8, 1228–1234 (1990).
[CrossRef]

M. Munowitz, D. J. Vezzetti, “Lateral confinement in generalized strip-loaded optical waveguides,” J. Appl. Phys. 68, 5375–5377 (1990).
[CrossRef]

D. W. Jenkins, “Optical constants of AlxGa1−xAs,” J. Appl. Phys. 68, 1848–1853 (1990).
[CrossRef]

1989 (1)

C. H. Henry, B. H. Verbeek, “Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis,” IEEE J. Lightwave Technol. 7, 308–313 (1989).
[CrossRef]

1983 (1)

Haruna, M.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Henry, C. H.

C. H. Henry, B. H. Verbeek, “Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis,” IEEE J. Lightwave Technol. 7, 308–313 (1989).
[CrossRef]

Jenkins, D. W.

D. W. Jenkins, “Optical constants of AlxGa1−xAs,” J. Appl. Phys. 68, 1848–1853 (1990).
[CrossRef]

Munowitz, M.

M. Munowitz, D. J. Vezzetti, “Lateral confinement in generalized strip-loaded optical waveguides,” J. Appl. Phys. 68, 5375–5377 (1990).
[CrossRef]

D. J. Vezzetti, M. Munowitz, “Analysis of finite rib waveguides by matrix methods,” IEEE J. Lightwave Technol. 8, 1228–1234 (1990).
[CrossRef]

Nishihara, H.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Okamura, Y.

Suhara, T.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Verbeek, B. H.

C. H. Henry, B. H. Verbeek, “Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis,” IEEE J. Lightwave Technol. 7, 308–313 (1989).
[CrossRef]

Vezzetti, D. J.

D. J. Vezzetti, M. Munowitz, “Analysis of finite rib waveguides by matrix methods,” IEEE J. Lightwave Technol. 8, 1228–1234 (1990).
[CrossRef]

M. Munowitz, D. J. Vezzetti, “Lateral confinement in generalized strip-loaded optical waveguides,” J. Appl. Phys. 68, 5375–5377 (1990).
[CrossRef]

Yamamoto, S.

Yoshinaka, S.

Appl. Opt. (1)

IEEE J. Lightwave Technol. (2)

C. H. Henry, B. H. Verbeek, “Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis,” IEEE J. Lightwave Technol. 7, 308–313 (1989).
[CrossRef]

D. J. Vezzetti, M. Munowitz, “Analysis of finite rib waveguides by matrix methods,” IEEE J. Lightwave Technol. 8, 1228–1234 (1990).
[CrossRef]

J. Appl. Phys. (2)

M. Munowitz, D. J. Vezzetti, “Lateral confinement in generalized strip-loaded optical waveguides,” J. Appl. Phys. 68, 5375–5377 (1990).
[CrossRef]

D. W. Jenkins, “Optical constants of AlxGa1−xAs,” J. Appl. Phys. 68, 1848–1853 (1990).
[CrossRef]

Other (1)

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross-sectional geometry of the raised-strip waveguide used in this experiment. Parameters are w = 5 μm, hr = 0.855 μm, hs = 3 μm, nƒ = 3.384, nc = ns = 3.331. The thicknesses hc and hƒ are approximately 0.23 and 0.5 μm, respectively, as discussed in the text.

Fig. 2
Fig. 2

Experimental equal-intensity contours observed in the multimode raised-strip waveguide of Fig. 1. The beat length is 563 ± 20 μm.

Fig. 3
Fig. 3

Difference between the modal refractive indices of the two lowest guided modes, computed for several thicknesses of the upper cladding hc, as a function of film (core) thickness hƒ. The two horizontal dashed lines correspond to the limiting values Δn as determined from the measured beat length in Fig. 2. Point T is the target structure, with estimated errors shown by the heavy trapezoidal region.

Fig. 4
Fig. 4

Computed equal-intensity contours for waveguide dimensions corresponding to point F in Fig. 3.

Metrics