Abstract

Conditions in which modest intracavity anisotropic losses generate highly polarized pulsed XeCl laser output are clarified. These conditions are generally applicable to other pulsed lasers.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Stephan, A. D. May, R. E. Mueller, B. Aissaoui, “Competition effects in the polarization of light in a quasi-isotropic laser,” J. Opt. Soc. Am. B 4, 1276–1280 (1987).
    [CrossRef]
  2. J. A. Dobrowolski, A. Waldorf, “High-performance thin film polarizer for the UV and visible spectral regions,” Appl. Opt. 20, 111–116(1981).
    [CrossRef] [PubMed]
  3. M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare gas fluoride lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
    [CrossRef]
  4. G. J. Linford, E. R. Peressini, W. R. Sooy, M. L. Spaeth, “Very long lasers,” Appl. Opt. 13, 379–390 (1974).
    [CrossRef] [PubMed]
  5. W. W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. QE-14, 377–381 (1978).
    [CrossRef]
  6. A. B. Treschchalov, V. E. Peet, “Spectral-time dynamics of the discharge pumping and lasing in a XeCl excimer laser,” IEEE J. Quantum Electron. QE-24, 169–176 (1988).
    [CrossRef]
  7. U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
    [CrossRef]
  8. C. A. Brau, J. J. Ewing, “Emission spectra of XeBr, XeCl, XeF and KrF*,” J. Chem. Phys. 63, 4640–4647 (1975).
    [CrossRef]
  9. P. B. Corkum, R. S. Taylor, “Picosecond amplification and kinetic studies of XeCl,” IEEE J. Quantum Electron. QE-18, 1962–1975 (1982).
    [CrossRef]

1988 (1)

A. B. Treschchalov, V. E. Peet, “Spectral-time dynamics of the discharge pumping and lasing in a XeCl excimer laser,” IEEE J. Quantum Electron. QE-24, 169–176 (1988).
[CrossRef]

1987 (1)

1982 (1)

P. B. Corkum, R. S. Taylor, “Picosecond amplification and kinetic studies of XeCl,” IEEE J. Quantum Electron. QE-18, 1962–1975 (1982).
[CrossRef]

1981 (1)

1978 (2)

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare gas fluoride lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

W. W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. QE-14, 377–381 (1978).
[CrossRef]

1975 (2)

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

C. A. Brau, J. J. Ewing, “Emission spectra of XeBr, XeCl, XeF and KrF*,” J. Chem. Phys. 63, 4640–4647 (1975).
[CrossRef]

1974 (1)

Aissaoui, B.

Brau, C. A.

C. A. Brau, J. J. Ewing, “Emission spectra of XeBr, XeCl, XeF and KrF*,” J. Chem. Phys. 63, 4640–4647 (1975).
[CrossRef]

Corkum, P. B.

P. B. Corkum, R. S. Taylor, “Picosecond amplification and kinetic studies of XeCl,” IEEE J. Quantum Electron. QE-18, 1962–1975 (1982).
[CrossRef]

Dobrowolski, J. A.

Ewing, J. J.

C. A. Brau, J. J. Ewing, “Emission spectra of XeBr, XeCl, XeF and KrF*,” J. Chem. Phys. 63, 4640–4647 (1975).
[CrossRef]

Ganiel, U.

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

Hardy, A.

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

Hsia, J. C.

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare gas fluoride lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

Jacob, J. H.

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare gas fluoride lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

Linford, G. J.

Mangano, J. A.

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare gas fluoride lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

May, A. D.

Mueller, R. E.

Neumann, G.

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

Peet, V. E.

A. B. Treschchalov, V. E. Peet, “Spectral-time dynamics of the discharge pumping and lasing in a XeCl excimer laser,” IEEE J. Quantum Electron. QE-24, 169–176 (1988).
[CrossRef]

Peressini, E. R.

Rigrod, W. W.

W. W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. QE-14, 377–381 (1978).
[CrossRef]

Rokni, M.

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare gas fluoride lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

Sooy, W. R.

Spaeth, M. L.

Stephan, G.

Taylor, R. S.

P. B. Corkum, R. S. Taylor, “Picosecond amplification and kinetic studies of XeCl,” IEEE J. Quantum Electron. QE-18, 1962–1975 (1982).
[CrossRef]

Treschchalov, A. B.

A. B. Treschchalov, V. E. Peet, “Spectral-time dynamics of the discharge pumping and lasing in a XeCl excimer laser,” IEEE J. Quantum Electron. QE-24, 169–176 (1988).
[CrossRef]

Treves, D.

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

Waldorf, A.

Appl. Opt. (2)

IEEE J. Quantum Electron. (5)

P. B. Corkum, R. S. Taylor, “Picosecond amplification and kinetic studies of XeCl,” IEEE J. Quantum Electron. QE-18, 1962–1975 (1982).
[CrossRef]

M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare gas fluoride lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978).
[CrossRef]

W. W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. QE-14, 377–381 (1978).
[CrossRef]

A. B. Treschchalov, V. E. Peet, “Spectral-time dynamics of the discharge pumping and lasing in a XeCl excimer laser,” IEEE J. Quantum Electron. QE-24, 169–176 (1988).
[CrossRef]

U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975).
[CrossRef]

J. Chem. Phys. (1)

C. A. Brau, J. J. Ewing, “Emission spectra of XeBr, XeCl, XeF and KrF*,” J. Chem. Phys. 63, 4640–4647 (1975).
[CrossRef]

J. Opt. Soc. Am. B (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of the experimental setup: a, mirror; b, fused-silica retaining windows; c, Brewster angle polarizers; d, XeCl active medium; e, output coupler; f, pyroelectric detector; g, pyroelectric signal lead; h, s-plane light component; i, p-plane light component; j, Glan prism analyzer; k, apertured turntable; 1, s-plane detector; m, p-plane detector; n, attenuating filter; o, s-plane signal lead; p, p-plane signal lead; q, delay line.

Fig. 2
Fig. 2

(a) Output percent polarization plotted versus polarizer extinction ratio for the 1535-Torr gas mixture. (b) Normalized output energy versus extinction ratio for the same gas mixture. △, results for the polarizers located by the mirror; □, results for the polarizers located by the outcoupler; ○, results for the polarizers equally distributed between the mirror and the outcoupler locations; ×, calculated polarization values of light passing through extracavity polarizers with the given extinction ratios; ○, isotropic cavity results. The results are within 95% confidence intervals.

Fig. 3
Fig. 3

(a) Output polarization versus extinction ratio for the 1070-Torr gas mixture. (b) Normalized output energy versus extinction ratio for the same gas mixture. The symbols are defined in the caption to Fig. 2, and the results are within 95% confidence intervals.

Fig. 4
Fig. 4

(a) Output irradiances in the p plane and (b) in the s plane, and (c) the output percent polarization. All figures depict results from an anisotropic cavity (0.074 extinction ratio by the mirror) versus time for the 1535-Torr gas mixture. The scales on the irradiance ordinates are arbitrary units relative to one another. The results are within 95% confidence intervals.

Fig. 5
Fig. 5

Output irradiances with the same parameters as in the caption to Fig. 4 but for the 1070-Torr gas mixture.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N = π n 2 Ω c ν 2 λ 4 ,
g 0 = 1 L ln ( I s N Δ λ ) = 0.08 cm - 1 ,

Metrics