Abstract

The integrated effect of atmospheric refractive turbulence on ground-based and airborne 1-, 2-, and 10-μm coherent lidars with different geometries is calculated as a function of height by using altitude profiles of Cn2.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (E) 1502 (1981).
    [CrossRef] [PubMed]
  2. F. Amzajerdian, J. F. Holmes, “Time-delayed statistics for a bistatic coherent lidar operating in atmospheric tubulence,” Appl. Opt. 30, 3029–3033 (1991).
    [CrossRef] [PubMed]
  3. K. P. Chan, D. K. Killinger, “Enhanced detection of atmospheric turbulence-distorted 1-μm coherent lidar returns using a two-dimensional heterodyne detector array,” Opt. Lett. 16, 1219–1221 (1991).
    [CrossRef] [PubMed]
  4. K. P. Chan, D. K. Killinger, N. Sugimoto, “Heterodyne Doppler 1-μm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence,” Appl. Opt. 30, 2617–2627 (1991).
    [CrossRef] [PubMed]
  5. R. L. Schwiesow, “Effects of Cn2 on a vertically pointing diffraction-limited lidar,” Appl. Opt. 27, 2517–2523 (1988).
    [CrossRef] [PubMed]
  6. M. Kavaya, S. W. Henderson, E. C. Rusell, R. M. Huffaker, R. M. Frehlich, “Monte Carlo computer simulation of ground-based and space-based coherent DIAL water vapor profiles,” Appl. Opt. 28, 840–851 (1989).
    [CrossRef] [PubMed]
  7. J. C. Wyngaard, Y. Izumi, “Behavior of the refractive-index structure parameter near the ground,” J. Opt. Soc. Am. 61, 1646–1650 (1971).
    [CrossRef]
  8. J. L. Bufton, P. O. Minotte, M. W. Fitzmaurice, “Measurements of turbulence profiles in the troposphere,” J. Opt. Soc. Am. 62, 1068–1070 (1972).
    [CrossRef]
  9. C. W. Fairall, A. S. Frish, “Diurnal and annual variation in mean profiles of Cn2,” NOAA Technical Memorandum ERL WPL-195 (National Oceanic and Atmospheric Administration, Boulder, Co., 1991).
  10. R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. I. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989).

1991 (3)

1989 (1)

1988 (1)

1981 (1)

S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (E) 1502 (1981).
[CrossRef] [PubMed]

1972 (1)

1971 (1)

Amzajerdian, F.

Bufton, J. L.

Chan, K. P.

Clifford, S. F.

S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (E) 1502 (1981).
[CrossRef] [PubMed]

Fairall, C. W.

C. W. Fairall, A. S. Frish, “Diurnal and annual variation in mean profiles of Cn2,” NOAA Technical Memorandum ERL WPL-195 (National Oceanic and Atmospheric Administration, Boulder, Co., 1991).

Fitzmaurice, M. W.

Frehlich, R. M.

Frish, A. S.

C. W. Fairall, A. S. Frish, “Diurnal and annual variation in mean profiles of Cn2,” NOAA Technical Memorandum ERL WPL-195 (National Oceanic and Atmospheric Administration, Boulder, Co., 1991).

Henderson, S. W.

Holmes, J. F.

Huffaker, R. M.

Hufnagel, R. E.

R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. I. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989).

Izumi, Y.

Kavaya, M.

Killinger, D. K.

Minotte, P. O.

Rusell, E. C.

Schwiesow, R. L.

Sugimoto, N.

Wandzura, S.

S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (E) 1502 (1981).
[CrossRef] [PubMed]

Wyngaard, J. C.

Appl. Opt. (5)

J. Opt. Soc. Am. (2)

Opt. Lett. (1)

Other (2)

C. W. Fairall, A. S. Frish, “Diurnal and annual variation in mean profiles of Cn2,” NOAA Technical Memorandum ERL WPL-195 (National Oceanic and Atmospheric Administration, Boulder, Co., 1991).

R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. I. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Semiempirical, seasonal profiles of Cn2 in Boulder, Colo, (provided by NOAA/Wave Propagation Laboratory).9

Fig. 2
Fig. 2

Calculated result of atmospheric turbulence coherence length ρ0, and a practical, useful receiver telescope diameter Du, for ground-based (a) 1.06-μm Nd:YAG, (b) 2-μm Ho:YAG, and (c) 10-μm CO2 coherent lidars. Two seasonal altitude profiles of Cn2 shown in Fig. 1 were used, summer day (S. D.) and winter night (W. N.).

Fig. 3
Fig. 3

Calculated result of atmospheric turbulence coherence length ρ0, and a practical7 useful receiver telescope diameter Du, for an airborne 2-μm Ho:YAG coherent lidar looking down vertically toward a target 1 m above the ground. Two seasonal altitude profiles of Cn2 shown in Fig. 1 were used.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ 0 = [ 2.91 k 2 0 R C n 2 ( z ) ( 1 - z / R ) 5 / 3 d z ] - 3 / 5 ,

Metrics