Abstract

Optical phase conjugation in methylene blue sensitized gelatin film has been obtained with 514.5-nm radiation from an argon-ion laser with power levels as low as 50 mW/cm2 for the pump beam in a degenerate four-wave-mixing configuration. The film with a thickness of 110–120 μm prepared from a solution of a 1.8-mmol concentration of methylene blue sensitized gelatin shows a good phase-conjugate reflectivity of 0.5% for this power level at 514.5 nm, which is well away from its absorption peak at ~ 650 nm.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Fischer, Optical Phase Conjugation (Academic, New York, 1983).
  2. B. R. Prasad, R. K. Mohan, P. S. Narayanan, C. K. Subramanian, P. Chandrasekhar, “Thermally induced optical phase conjugation by degenerative four wave mixing,” Curr. Sci. 57, 648–654 (1988).
  3. Y. Silberbarg, I. Bar-Joseph, “Low power phase conjugation in thin film saturable absorbers,” Opt. Commun. 39, 265–268 (1981).
    [CrossRef]
  4. H. Fujiwara, K. Nakagawa, “Phase conjugation in fluorescein film of degenerate four wave mixing and holographic process,” Opt. Commun. 55, 386–390 (1985).
    [CrossRef]
  5. K. P. B. Moosad, V. P. N. Nampoori, “Saturable absorbers for low power optical phase conjugation,” Pramana 31, 281–287 (1988).
    [CrossRef]
  6. M. A. Kramer, W. R. Tompkin, J. Krasmiski, R. W. Boyd, “Nonlinear optical properties of fluorescein in boric acid glass,” J. Lumin. 31/32, 789 (1984).
    [CrossRef]
  7. G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical phase conjugation in Rhodamine-6G doped boric acid glass,” Opt. Commun. 73, 81–84 (1989).
    [CrossRef]
  8. C. Solano, R. A. Lessard, P. C. Roberge, “Methylene blue sensitized gelatin as photosensitive medium for conventional and polarizing holography,” Appl. Opt. 26, 1989–1997 (1987).
    [CrossRef] [PubMed]
  9. N. Capolla, R. A. Lessard, “Processing of holograms recorded in methylene blue sensitized gelatin,” Appl. Opt. 27, 3008–3012 (1988).
    [CrossRef] [PubMed]

1989 (1)

G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical phase conjugation in Rhodamine-6G doped boric acid glass,” Opt. Commun. 73, 81–84 (1989).
[CrossRef]

1988 (3)

N. Capolla, R. A. Lessard, “Processing of holograms recorded in methylene blue sensitized gelatin,” Appl. Opt. 27, 3008–3012 (1988).
[CrossRef] [PubMed]

B. R. Prasad, R. K. Mohan, P. S. Narayanan, C. K. Subramanian, P. Chandrasekhar, “Thermally induced optical phase conjugation by degenerative four wave mixing,” Curr. Sci. 57, 648–654 (1988).

K. P. B. Moosad, V. P. N. Nampoori, “Saturable absorbers for low power optical phase conjugation,” Pramana 31, 281–287 (1988).
[CrossRef]

1987 (1)

1985 (1)

H. Fujiwara, K. Nakagawa, “Phase conjugation in fluorescein film of degenerate four wave mixing and holographic process,” Opt. Commun. 55, 386–390 (1985).
[CrossRef]

1984 (1)

M. A. Kramer, W. R. Tompkin, J. Krasmiski, R. W. Boyd, “Nonlinear optical properties of fluorescein in boric acid glass,” J. Lumin. 31/32, 789 (1984).
[CrossRef]

1981 (1)

Y. Silberbarg, I. Bar-Joseph, “Low power phase conjugation in thin film saturable absorbers,” Opt. Commun. 39, 265–268 (1981).
[CrossRef]

Bar-Joseph, I.

Y. Silberbarg, I. Bar-Joseph, “Low power phase conjugation in thin film saturable absorbers,” Opt. Commun. 39, 265–268 (1981).
[CrossRef]

Boyd, R. W.

M. A. Kramer, W. R. Tompkin, J. Krasmiski, R. W. Boyd, “Nonlinear optical properties of fluorescein in boric acid glass,” J. Lumin. 31/32, 789 (1984).
[CrossRef]

Capolla, N.

Chandrasekhar, P.

B. R. Prasad, R. K. Mohan, P. S. Narayanan, C. K. Subramanian, P. Chandrasekhar, “Thermally induced optical phase conjugation by degenerative four wave mixing,” Curr. Sci. 57, 648–654 (1988).

Fischer, R. A.

R. A. Fischer, Optical Phase Conjugation (Academic, New York, 1983).

Fujiwara, H.

H. Fujiwara, K. Nakagawa, “Phase conjugation in fluorescein film of degenerate four wave mixing and holographic process,” Opt. Commun. 55, 386–390 (1985).
[CrossRef]

Kramer, M. A.

M. A. Kramer, W. R. Tompkin, J. Krasmiski, R. W. Boyd, “Nonlinear optical properties of fluorescein in boric acid glass,” J. Lumin. 31/32, 789 (1984).
[CrossRef]

Krasmiski, J.

M. A. Kramer, W. R. Tompkin, J. Krasmiski, R. W. Boyd, “Nonlinear optical properties of fluorescein in boric acid glass,” J. Lumin. 31/32, 789 (1984).
[CrossRef]

Kumar, G. R.

G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical phase conjugation in Rhodamine-6G doped boric acid glass,” Opt. Commun. 73, 81–84 (1989).
[CrossRef]

Lessard, R. A.

Mohan, R. K.

B. R. Prasad, R. K. Mohan, P. S. Narayanan, C. K. Subramanian, P. Chandrasekhar, “Thermally induced optical phase conjugation by degenerative four wave mixing,” Curr. Sci. 57, 648–654 (1988).

Moosad, K. P. B.

K. P. B. Moosad, V. P. N. Nampoori, “Saturable absorbers for low power optical phase conjugation,” Pramana 31, 281–287 (1988).
[CrossRef]

Nakagawa, K.

H. Fujiwara, K. Nakagawa, “Phase conjugation in fluorescein film of degenerate four wave mixing and holographic process,” Opt. Commun. 55, 386–390 (1985).
[CrossRef]

Nampoori, V. P. N.

K. P. B. Moosad, V. P. N. Nampoori, “Saturable absorbers for low power optical phase conjugation,” Pramana 31, 281–287 (1988).
[CrossRef]

Narayanan, P. S.

B. R. Prasad, R. K. Mohan, P. S. Narayanan, C. K. Subramanian, P. Chandrasekhar, “Thermally induced optical phase conjugation by degenerative four wave mixing,” Curr. Sci. 57, 648–654 (1988).

Prasad, B. R.

B. R. Prasad, R. K. Mohan, P. S. Narayanan, C. K. Subramanian, P. Chandrasekhar, “Thermally induced optical phase conjugation by degenerative four wave mixing,” Curr. Sci. 57, 648–654 (1988).

Roberge, P. C.

Sharma, K. K.

G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical phase conjugation in Rhodamine-6G doped boric acid glass,” Opt. Commun. 73, 81–84 (1989).
[CrossRef]

Silberbarg, Y.

Y. Silberbarg, I. Bar-Joseph, “Low power phase conjugation in thin film saturable absorbers,” Opt. Commun. 39, 265–268 (1981).
[CrossRef]

Singh, B. P.

G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical phase conjugation in Rhodamine-6G doped boric acid glass,” Opt. Commun. 73, 81–84 (1989).
[CrossRef]

Solano, C.

Subramanian, C. K.

B. R. Prasad, R. K. Mohan, P. S. Narayanan, C. K. Subramanian, P. Chandrasekhar, “Thermally induced optical phase conjugation by degenerative four wave mixing,” Curr. Sci. 57, 648–654 (1988).

Tompkin, W. R.

M. A. Kramer, W. R. Tompkin, J. Krasmiski, R. W. Boyd, “Nonlinear optical properties of fluorescein in boric acid glass,” J. Lumin. 31/32, 789 (1984).
[CrossRef]

Appl. Opt. (2)

Curr. Sci. (1)

B. R. Prasad, R. K. Mohan, P. S. Narayanan, C. K. Subramanian, P. Chandrasekhar, “Thermally induced optical phase conjugation by degenerative four wave mixing,” Curr. Sci. 57, 648–654 (1988).

J. Lumin. (1)

M. A. Kramer, W. R. Tompkin, J. Krasmiski, R. W. Boyd, “Nonlinear optical properties of fluorescein in boric acid glass,” J. Lumin. 31/32, 789 (1984).
[CrossRef]

Opt. Commun. (3)

G. R. Kumar, B. P. Singh, K. K. Sharma, “Optical phase conjugation in Rhodamine-6G doped boric acid glass,” Opt. Commun. 73, 81–84 (1989).
[CrossRef]

Y. Silberbarg, I. Bar-Joseph, “Low power phase conjugation in thin film saturable absorbers,” Opt. Commun. 39, 265–268 (1981).
[CrossRef]

H. Fujiwara, K. Nakagawa, “Phase conjugation in fluorescein film of degenerate four wave mixing and holographic process,” Opt. Commun. 55, 386–390 (1985).
[CrossRef]

Pramana (1)

K. P. B. Moosad, V. P. N. Nampoori, “Saturable absorbers for low power optical phase conjugation,” Pramana 31, 281–287 (1988).
[CrossRef]

Other (1)

R. A. Fischer, Optical Phase Conjugation (Academic, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: Ar, laser; M, mirror; BS, beam splitter; S, sample; CL, concave lens; D, detector; DM, digital memoryscope; P, plotter.

Fig. 2
Fig. 2

Time evolution of the effective PC signal in a typical MSG film (1.8 mmol).

Fig. 3
Fig. 3

Behavior of the PC signal intensity when the write beams E1 and Ep are cut off (MSG film is 1.8 mmol).

Fig. 4
Fig. 4

Two processes in the PC wave generation separated. Curve (a), effective PC signal intensity; curve (b), contribution to the PC signal that is due to photoreduction of the dye (holographic process); curve (c), contribution to the PC signal that is due to the saturation of absorption in the dye (DFWM process). (MSG film, 1.8 mmol).

Metrics