Abstract

An outline is given of a technique for designing quadrilayers that enhance the magneto-optic polar Kerr effect by maximizing the signal-to-noise ratio associated with readout systems utilizing differential detection. The method is particularly novel in that it produces maximized Kerr rotations with controllable ellipticities by using a systematic design procedure that does not involve computer-driven iterative techniques that search for optimum film structures. A number of quadrilayers, based on the ZnS–TbFeCo–ZnS–Al system, have been prepared using rf and dc sputtering and conventional evaporation techniques. The performance of the devices in terms of the basic optical and magneto-optical functions is good compared with theoretical predictions, both at the design wavelength and at all other regions of the spectrum, in the range 400–800 nm.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Torazawa, S. Sumi, S. Marata, S. Minechita, Y. Ishii, “Erasable digital audio disk system,” Appl. Opt. 25, 3990–3995 (1986).
    [Crossref] [PubMed]
  2. R. Atkinson, I. W. Salter, J. Xu, “Quadrilayer magneto-optic enhancement with zero Kerr ellipticity,” J. Magn. Mat. 102, 357–364 (1991).
    [Crossref]
  3. R. Atkinson, R. Gamble, P. F. Gu, P. H. Lissberger, “Ellipsometric comparisons of rare earth-transition metal alloy films in connection with magneto-optical recording,” Thin Solid Films 162, 89–100 (1988).
    [Crossref]
  4. P. He, W. A. McGahan, J. A. Woollam, “Magneto-optical Kerr effect and perpendicular magnetic anisotropy of evaporated and sputtered Co/Pt multilayer structures,” J. Appl. Phys. 69, 4021–4028 (1991).
    [Crossref]
  5. S. Hashimoto, Y. Ochiai, K. Aso, “Light wavelength dependence of magneto-optical properties of ultrathin Co/Pt and Co/Pd multilayered films,” Jpn. J. Appl. Phys. 28, L1824–L1826 (1989).
    [Crossref]
  6. I. Hatakeyama, S. Hirono, K. Nonaka, O. Ishii, “Magneto-optical thin film reading head,” Appl. Opt. 25, 146–150 (1986).
    [Crossref] [PubMed]
  7. K. Egashira, T. Yamada, “Kerr-effect enhancement and improvement of readout characteristics in MnBi films memory,” J. Appl. Phys. 45, 3643–3648 (1974).
    [Crossref]
  8. R. Gamble, P. H. Lissberger, M. R. Parker, “A simple analysis for the optimisation of the normal polar magneto-optical Kerr effect in multilayer coatings containing a magnetic film,” IEEE Trans. Magn. 21, 1651–1653 (1985).
    [Crossref]
  9. B. I. Finkelstein, W. C. Williams, “Noise sources in magneto-optic recording,” Appl. Opt. 27, 703–709 (1988).
    [Crossref] [PubMed]
  10. T. W. McDaniel, B. I. Finkelstein, W. C. Williams, “Design and characterisation of a quadrilayer magneto-optic disk,” IEEE Trans. Magn. 24, 2467–2469 (1988).
    [Crossref]
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

1991 (2)

P. He, W. A. McGahan, J. A. Woollam, “Magneto-optical Kerr effect and perpendicular magnetic anisotropy of evaporated and sputtered Co/Pt multilayer structures,” J. Appl. Phys. 69, 4021–4028 (1991).
[Crossref]

R. Atkinson, I. W. Salter, J. Xu, “Quadrilayer magneto-optic enhancement with zero Kerr ellipticity,” J. Magn. Mat. 102, 357–364 (1991).
[Crossref]

1989 (1)

S. Hashimoto, Y. Ochiai, K. Aso, “Light wavelength dependence of magneto-optical properties of ultrathin Co/Pt and Co/Pd multilayered films,” Jpn. J. Appl. Phys. 28, L1824–L1826 (1989).
[Crossref]

1988 (3)

R. Atkinson, R. Gamble, P. F. Gu, P. H. Lissberger, “Ellipsometric comparisons of rare earth-transition metal alloy films in connection with magneto-optical recording,” Thin Solid Films 162, 89–100 (1988).
[Crossref]

B. I. Finkelstein, W. C. Williams, “Noise sources in magneto-optic recording,” Appl. Opt. 27, 703–709 (1988).
[Crossref] [PubMed]

T. W. McDaniel, B. I. Finkelstein, W. C. Williams, “Design and characterisation of a quadrilayer magneto-optic disk,” IEEE Trans. Magn. 24, 2467–2469 (1988).
[Crossref]

1986 (2)

1985 (1)

R. Gamble, P. H. Lissberger, M. R. Parker, “A simple analysis for the optimisation of the normal polar magneto-optical Kerr effect in multilayer coatings containing a magnetic film,” IEEE Trans. Magn. 21, 1651–1653 (1985).
[Crossref]

1974 (1)

K. Egashira, T. Yamada, “Kerr-effect enhancement and improvement of readout characteristics in MnBi films memory,” J. Appl. Phys. 45, 3643–3648 (1974).
[Crossref]

Aso, K.

S. Hashimoto, Y. Ochiai, K. Aso, “Light wavelength dependence of magneto-optical properties of ultrathin Co/Pt and Co/Pd multilayered films,” Jpn. J. Appl. Phys. 28, L1824–L1826 (1989).
[Crossref]

Atkinson, R.

R. Atkinson, I. W. Salter, J. Xu, “Quadrilayer magneto-optic enhancement with zero Kerr ellipticity,” J. Magn. Mat. 102, 357–364 (1991).
[Crossref]

R. Atkinson, R. Gamble, P. F. Gu, P. H. Lissberger, “Ellipsometric comparisons of rare earth-transition metal alloy films in connection with magneto-optical recording,” Thin Solid Films 162, 89–100 (1988).
[Crossref]

Egashira, K.

K. Egashira, T. Yamada, “Kerr-effect enhancement and improvement of readout characteristics in MnBi films memory,” J. Appl. Phys. 45, 3643–3648 (1974).
[Crossref]

Finkelstein, B. I.

B. I. Finkelstein, W. C. Williams, “Noise sources in magneto-optic recording,” Appl. Opt. 27, 703–709 (1988).
[Crossref] [PubMed]

T. W. McDaniel, B. I. Finkelstein, W. C. Williams, “Design and characterisation of a quadrilayer magneto-optic disk,” IEEE Trans. Magn. 24, 2467–2469 (1988).
[Crossref]

Gamble, R.

R. Atkinson, R. Gamble, P. F. Gu, P. H. Lissberger, “Ellipsometric comparisons of rare earth-transition metal alloy films in connection with magneto-optical recording,” Thin Solid Films 162, 89–100 (1988).
[Crossref]

R. Gamble, P. H. Lissberger, M. R. Parker, “A simple analysis for the optimisation of the normal polar magneto-optical Kerr effect in multilayer coatings containing a magnetic film,” IEEE Trans. Magn. 21, 1651–1653 (1985).
[Crossref]

Gu, P. F.

R. Atkinson, R. Gamble, P. F. Gu, P. H. Lissberger, “Ellipsometric comparisons of rare earth-transition metal alloy films in connection with magneto-optical recording,” Thin Solid Films 162, 89–100 (1988).
[Crossref]

Hashimoto, S.

S. Hashimoto, Y. Ochiai, K. Aso, “Light wavelength dependence of magneto-optical properties of ultrathin Co/Pt and Co/Pd multilayered films,” Jpn. J. Appl. Phys. 28, L1824–L1826 (1989).
[Crossref]

Hatakeyama, I.

He, P.

P. He, W. A. McGahan, J. A. Woollam, “Magneto-optical Kerr effect and perpendicular magnetic anisotropy of evaporated and sputtered Co/Pt multilayer structures,” J. Appl. Phys. 69, 4021–4028 (1991).
[Crossref]

Hirono, S.

Ishii, O.

Ishii, Y.

Lissberger, P. H.

R. Atkinson, R. Gamble, P. F. Gu, P. H. Lissberger, “Ellipsometric comparisons of rare earth-transition metal alloy films in connection with magneto-optical recording,” Thin Solid Films 162, 89–100 (1988).
[Crossref]

R. Gamble, P. H. Lissberger, M. R. Parker, “A simple analysis for the optimisation of the normal polar magneto-optical Kerr effect in multilayer coatings containing a magnetic film,” IEEE Trans. Magn. 21, 1651–1653 (1985).
[Crossref]

Marata, S.

McDaniel, T. W.

T. W. McDaniel, B. I. Finkelstein, W. C. Williams, “Design and characterisation of a quadrilayer magneto-optic disk,” IEEE Trans. Magn. 24, 2467–2469 (1988).
[Crossref]

McGahan, W. A.

P. He, W. A. McGahan, J. A. Woollam, “Magneto-optical Kerr effect and perpendicular magnetic anisotropy of evaporated and sputtered Co/Pt multilayer structures,” J. Appl. Phys. 69, 4021–4028 (1991).
[Crossref]

Minechita, S.

Nonaka, K.

Ochiai, Y.

S. Hashimoto, Y. Ochiai, K. Aso, “Light wavelength dependence of magneto-optical properties of ultrathin Co/Pt and Co/Pd multilayered films,” Jpn. J. Appl. Phys. 28, L1824–L1826 (1989).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Parker, M. R.

R. Gamble, P. H. Lissberger, M. R. Parker, “A simple analysis for the optimisation of the normal polar magneto-optical Kerr effect in multilayer coatings containing a magnetic film,” IEEE Trans. Magn. 21, 1651–1653 (1985).
[Crossref]

Salter, I. W.

R. Atkinson, I. W. Salter, J. Xu, “Quadrilayer magneto-optic enhancement with zero Kerr ellipticity,” J. Magn. Mat. 102, 357–364 (1991).
[Crossref]

Sumi, S.

Torazawa, K.

Williams, W. C.

T. W. McDaniel, B. I. Finkelstein, W. C. Williams, “Design and characterisation of a quadrilayer magneto-optic disk,” IEEE Trans. Magn. 24, 2467–2469 (1988).
[Crossref]

B. I. Finkelstein, W. C. Williams, “Noise sources in magneto-optic recording,” Appl. Opt. 27, 703–709 (1988).
[Crossref] [PubMed]

Woollam, J. A.

P. He, W. A. McGahan, J. A. Woollam, “Magneto-optical Kerr effect and perpendicular magnetic anisotropy of evaporated and sputtered Co/Pt multilayer structures,” J. Appl. Phys. 69, 4021–4028 (1991).
[Crossref]

Xu, J.

R. Atkinson, I. W. Salter, J. Xu, “Quadrilayer magneto-optic enhancement with zero Kerr ellipticity,” J. Magn. Mat. 102, 357–364 (1991).
[Crossref]

Yamada, T.

K. Egashira, T. Yamada, “Kerr-effect enhancement and improvement of readout characteristics in MnBi films memory,” J. Appl. Phys. 45, 3643–3648 (1974).
[Crossref]

Appl. Opt. (3)

IEEE Trans. Magn. (2)

T. W. McDaniel, B. I. Finkelstein, W. C. Williams, “Design and characterisation of a quadrilayer magneto-optic disk,” IEEE Trans. Magn. 24, 2467–2469 (1988).
[Crossref]

R. Gamble, P. H. Lissberger, M. R. Parker, “A simple analysis for the optimisation of the normal polar magneto-optical Kerr effect in multilayer coatings containing a magnetic film,” IEEE Trans. Magn. 21, 1651–1653 (1985).
[Crossref]

J. Appl. Phys. (2)

K. Egashira, T. Yamada, “Kerr-effect enhancement and improvement of readout characteristics in MnBi films memory,” J. Appl. Phys. 45, 3643–3648 (1974).
[Crossref]

P. He, W. A. McGahan, J. A. Woollam, “Magneto-optical Kerr effect and perpendicular magnetic anisotropy of evaporated and sputtered Co/Pt multilayer structures,” J. Appl. Phys. 69, 4021–4028 (1991).
[Crossref]

J. Magn. Mat. (1)

R. Atkinson, I. W. Salter, J. Xu, “Quadrilayer magneto-optic enhancement with zero Kerr ellipticity,” J. Magn. Mat. 102, 357–364 (1991).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Hashimoto, Y. Ochiai, K. Aso, “Light wavelength dependence of magneto-optical properties of ultrathin Co/Pt and Co/Pd multilayered films,” Jpn. J. Appl. Phys. 28, L1824–L1826 (1989).
[Crossref]

Thin Solid Films (1)

R. Atkinson, R. Gamble, P. F. Gu, P. H. Lissberger, “Ellipsometric comparisons of rare earth-transition metal alloy films in connection with magneto-optical recording,” Thin Solid Films 162, 89–100 (1988).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Quadrilayer structure showing complex amplitude reflectance at a fictitious air gap above a phase-variable mirror.

Fig. 2
Fig. 2

Variation of gain function G with phase angle ρm for a TbFeCo layer thickness of 12.2 nm.

Fig. 3
Fig. 3

Dispersion of the complex refractive index n(= n′ + in″) of TbFeCo.

Fig. 4
Fig. 4

Dispersion of the magneto-optical (M.O.) parameter Q(= Q′ + iQ″) of TbFeCo.

Fig. 5
Fig. 5

Calculated reflectance changes during the deposition of a quadrilayer system.

Fig. 6
Fig. 6

Measured and calculated dispersion of the complex Kerr rotation θk + ik of a quadrilayer system.

Fig. 7
Fig. 7

Measured and calculated dispersion of the modulus of the Kerr rotation of a quadrilayer system.

Fig. 8
Fig. 8

Measured and calculated dispersion of the reflectance R and the cosine of the magneto-optic phase parameter δk for a quadrilayer system.

Tables (2)

Tables Icon

Table 1 Optical, Magneto-optical Constants and Thicknesses of Design Materials at a Wavelength of 633 nm

Tables Icon

Table 2 Theoretical and Measured Design Parameters for a ZnS–TbFeCo–ZnS–AI Quadrilayer at the Design Wavelength of 633 nm

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S N = P ψ k 2 R ( 1 - R ) 2 cos 2 δ k + σ R + ( λ + μ ) ψ k 2 R ( 1 - R ) 2 cos 2 δ k ,
k = ψ k ( 1 - R ) .
R = 3 [ ( 1 + 8 σ / 9 ) 1 / 2 - 1 ] / 4 σ
ψ k = ( 1 + Γ 2 ) 1 / 2 G Q ,
G = g ( n , n , d , r m ) .
G max = ( 1 + Γ - 2 ) 1 / 2 ,
r s = r z - r z exp ( i ρ ) 1 - r z 2 exp ( i ρ ) = r s exp ( - i ρ s ) .
R = | - r z + r s exp [ i ( ρ s + 2 Δ ) ] 1 - r z r s exp [ i ( ρ s + 2 Δ ) ] | 2 ,

Metrics