Abstract

A photon-counting camera is used to generate images of thermal (blackbody) objects. Analytical estimates of the count rates that can be obtained for thermal objects in the 300–800-K temperature range are given for several different photocathode materials. Images generated with a photon-counting camera are compared with those obtained with infrared cameras that operate in the 3–5 and 8–12-μm ranges. It is found that high-resolution images of thermal objects can be generated with the photon-counting camera. The noise-equivalent differential temperature that can be obtained with a photon-counting camera is given as a function of the number of detected photoevents. Pattern-recognition experiments that use low-light-level (quantum-limited) images of thermal objects are reported. In the experiments, photon-limited images of thermal objects are correlated with a reference function that is stored in computer memory. The number of detected photoevents required to reliably distinguish between two thermal objects is determined and compared to the noise-equivalent differential temperature figure of merit.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See for example, feature issues on quantum-limited imaging and image processing, J. Opt. Soc. Am. A. 3, 2001–2248 (1986); J. Opt. Soc. Am. A. 7, 1153–1336 (1990).
  2. A. Rose, Vision: Human and Electronic (Plenum, New York, 1977), Chap. 1, pp. 1–27.
  3. H. H. Barrett, W. Swindell, Radiological Imaging (Academic, New York, 1981), Vol. 1, Chap. 10, pp. 562–628.
  4. G. M. Morris, “Pattern recognition using photon-limited images,” in Optical Computing and Processing, H. H. Arsenault, T. Szoplik, B. Macukow, eds. (Academic, New York, 1989), pp. 343–390.
  5. T. A. Isberg, “Quantum-limited image recognition,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1989).
  6. M. N. Wernick, “Classification techniques for quantum-limited and classical-intensity images, Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1989).
  7. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), Chap. 3, pp. 28–50.
  8. R. W. Engstrom, RCA Photomultiplier Handbook (RCA Corporation, Lancaster, Pa., 1980), Chap. 1, pp. 3–9.
  9. Varian Associates, Inc., data sheet LSED-2000 (Varian Associates, Inc., Palo Alto, Calif., 1982).
  10. M. Donabedian, “Cooling systems,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute, Ann Arbor, Mich., 1978), Chap. 15, pp. 1–85.
  11. International Telephone and Telegraph Electro-Optical Products Division, Model F4146M photon-counting image detector, International Telephone and Telegraph Electro-Optical Products Division, Fort Wayne, Ind., 1991.
  12. Inframetrics Corporation, Model 600 infrared imaging radiometer, Inframetrics Corporation, Bedford, Mass., 1991.
  13. Inframetrics Corporation, “Model 600 operator’s manual,” (Inframetrics Corporation, Bedford, Mass., 1988), Sec. B.3.3.
  14. Inframetrics Corporation, “Model 600 operator’s manual,” (Inframetrics Corporation, Bedford, Mass., 1988), Sec. 1.
  15. F. P. Blommel, Electro-Optics Branch, Wright Laboratory, Wright-Patterson Air Force Base, Ohio, 45433-6543 (personal communication).
  16. See, for example, Amber Engineering, Inc., focal plane array products, Amber Engineering, Inc., Goleta, Ga., 1990.
  17. Mitsubishi Electric Corporation, Mitsubishi Electric Corporation, Tokyo, 1991.
  18. J. S. Lapington, A. D. Smith, D. M. Walton, H. E. Schwarz, “Microchannel plate pore size limited imaging with ultra-thin wedge and strip anodes,” IEEE Trans. Nucl. Sci. NS-34, 431–433 (1987).
    [Crossref]
  19. S. E. Sobottka, M. B. Williams, “Delay line readout of microchannel plates,” IEEE Trans. Nucl. Sci. NS-35, 348–351 (1988).
    [Crossref]
  20. C. Martin, A. Rasmussen, “Mosaic wedge-and-strip arrays for large format microchannel plate detectors,” IEEE Trans. Nucl. Sci. NS-36, 836–840 (1989).
    [Crossref]
  21. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1979), Chap. 2.6, pp. 17–19.
  22. E. A. Watson, “Thermal imaging with photon-counting detectors,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1991), Chap. 2, pp. 20–43.
  23. E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
    [Crossref]
  24. K. Fukunaga, Introduction to Statistical Pattern Recognition (Academic, New York, 1972), Sec. 4.2.
  25. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), Chap. 5, pp. 69–94.

1990 (1)

E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[Crossref]

1989 (1)

C. Martin, A. Rasmussen, “Mosaic wedge-and-strip arrays for large format microchannel plate detectors,” IEEE Trans. Nucl. Sci. NS-36, 836–840 (1989).
[Crossref]

1988 (1)

S. E. Sobottka, M. B. Williams, “Delay line readout of microchannel plates,” IEEE Trans. Nucl. Sci. NS-35, 348–351 (1988).
[Crossref]

1987 (1)

J. S. Lapington, A. D. Smith, D. M. Walton, H. E. Schwarz, “Microchannel plate pore size limited imaging with ultra-thin wedge and strip anodes,” IEEE Trans. Nucl. Sci. NS-34, 431–433 (1987).
[Crossref]

1986 (1)

See for example, feature issues on quantum-limited imaging and image processing, J. Opt. Soc. Am. A. 3, 2001–2248 (1986); J. Opt. Soc. Am. A. 7, 1153–1336 (1990).

Barrett, H. H.

H. H. Barrett, W. Swindell, Radiological Imaging (Academic, New York, 1981), Vol. 1, Chap. 10, pp. 562–628.

Blommel, F. P.

F. P. Blommel, Electro-Optics Branch, Wright Laboratory, Wright-Patterson Air Force Base, Ohio, 45433-6543 (personal communication).

Boyd, R. W.

R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), Chap. 3, pp. 28–50.

R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), Chap. 5, pp. 69–94.

Donabedian, M.

M. Donabedian, “Cooling systems,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute, Ann Arbor, Mich., 1978), Chap. 15, pp. 1–85.

Engstrom, R. W.

R. W. Engstrom, RCA Photomultiplier Handbook (RCA Corporation, Lancaster, Pa., 1980), Chap. 1, pp. 3–9.

Fukunaga, K.

K. Fukunaga, Introduction to Statistical Pattern Recognition (Academic, New York, 1972), Sec. 4.2.

Isberg, T. A.

T. A. Isberg, “Quantum-limited image recognition,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1989).

Kingston, R. H.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1979), Chap. 2.6, pp. 17–19.

Lapington, J. S.

J. S. Lapington, A. D. Smith, D. M. Walton, H. E. Schwarz, “Microchannel plate pore size limited imaging with ultra-thin wedge and strip anodes,” IEEE Trans. Nucl. Sci. NS-34, 431–433 (1987).
[Crossref]

Martin, C.

C. Martin, A. Rasmussen, “Mosaic wedge-and-strip arrays for large format microchannel plate detectors,” IEEE Trans. Nucl. Sci. NS-36, 836–840 (1989).
[Crossref]

Morris, G. M.

E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[Crossref]

G. M. Morris, “Pattern recognition using photon-limited images,” in Optical Computing and Processing, H. H. Arsenault, T. Szoplik, B. Macukow, eds. (Academic, New York, 1989), pp. 343–390.

Rasmussen, A.

C. Martin, A. Rasmussen, “Mosaic wedge-and-strip arrays for large format microchannel plate detectors,” IEEE Trans. Nucl. Sci. NS-36, 836–840 (1989).
[Crossref]

Rose, A.

A. Rose, Vision: Human and Electronic (Plenum, New York, 1977), Chap. 1, pp. 1–27.

Schwarz, H. E.

J. S. Lapington, A. D. Smith, D. M. Walton, H. E. Schwarz, “Microchannel plate pore size limited imaging with ultra-thin wedge and strip anodes,” IEEE Trans. Nucl. Sci. NS-34, 431–433 (1987).
[Crossref]

Smith, A. D.

J. S. Lapington, A. D. Smith, D. M. Walton, H. E. Schwarz, “Microchannel plate pore size limited imaging with ultra-thin wedge and strip anodes,” IEEE Trans. Nucl. Sci. NS-34, 431–433 (1987).
[Crossref]

Sobottka, S. E.

S. E. Sobottka, M. B. Williams, “Delay line readout of microchannel plates,” IEEE Trans. Nucl. Sci. NS-35, 348–351 (1988).
[Crossref]

Swindell, W.

H. H. Barrett, W. Swindell, Radiological Imaging (Academic, New York, 1981), Vol. 1, Chap. 10, pp. 562–628.

Walton, D. M.

J. S. Lapington, A. D. Smith, D. M. Walton, H. E. Schwarz, “Microchannel plate pore size limited imaging with ultra-thin wedge and strip anodes,” IEEE Trans. Nucl. Sci. NS-34, 431–433 (1987).
[Crossref]

Watson, E. A.

E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[Crossref]

E. A. Watson, “Thermal imaging with photon-counting detectors,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1991), Chap. 2, pp. 20–43.

Wernick, M. N.

M. N. Wernick, “Classification techniques for quantum-limited and classical-intensity images, Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1989).

Williams, M. B.

S. E. Sobottka, M. B. Williams, “Delay line readout of microchannel plates,” IEEE Trans. Nucl. Sci. NS-35, 348–351 (1988).
[Crossref]

IEEE Trans. Nucl. Sci. (3)

J. S. Lapington, A. D. Smith, D. M. Walton, H. E. Schwarz, “Microchannel plate pore size limited imaging with ultra-thin wedge and strip anodes,” IEEE Trans. Nucl. Sci. NS-34, 431–433 (1987).
[Crossref]

S. E. Sobottka, M. B. Williams, “Delay line readout of microchannel plates,” IEEE Trans. Nucl. Sci. NS-35, 348–351 (1988).
[Crossref]

C. Martin, A. Rasmussen, “Mosaic wedge-and-strip arrays for large format microchannel plate detectors,” IEEE Trans. Nucl. Sci. NS-36, 836–840 (1989).
[Crossref]

J. Appl. Phys. (1)

E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[Crossref]

J. Opt. Soc. Am. A. (1)

See for example, feature issues on quantum-limited imaging and image processing, J. Opt. Soc. Am. A. 3, 2001–2248 (1986); J. Opt. Soc. Am. A. 7, 1153–1336 (1990).

Other (20)

A. Rose, Vision: Human and Electronic (Plenum, New York, 1977), Chap. 1, pp. 1–27.

H. H. Barrett, W. Swindell, Radiological Imaging (Academic, New York, 1981), Vol. 1, Chap. 10, pp. 562–628.

G. M. Morris, “Pattern recognition using photon-limited images,” in Optical Computing and Processing, H. H. Arsenault, T. Szoplik, B. Macukow, eds. (Academic, New York, 1989), pp. 343–390.

T. A. Isberg, “Quantum-limited image recognition,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1989).

M. N. Wernick, “Classification techniques for quantum-limited and classical-intensity images, Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1989).

R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), Chap. 3, pp. 28–50.

R. W. Engstrom, RCA Photomultiplier Handbook (RCA Corporation, Lancaster, Pa., 1980), Chap. 1, pp. 3–9.

Varian Associates, Inc., data sheet LSED-2000 (Varian Associates, Inc., Palo Alto, Calif., 1982).

M. Donabedian, “Cooling systems,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute, Ann Arbor, Mich., 1978), Chap. 15, pp. 1–85.

International Telephone and Telegraph Electro-Optical Products Division, Model F4146M photon-counting image detector, International Telephone and Telegraph Electro-Optical Products Division, Fort Wayne, Ind., 1991.

Inframetrics Corporation, Model 600 infrared imaging radiometer, Inframetrics Corporation, Bedford, Mass., 1991.

Inframetrics Corporation, “Model 600 operator’s manual,” (Inframetrics Corporation, Bedford, Mass., 1988), Sec. B.3.3.

Inframetrics Corporation, “Model 600 operator’s manual,” (Inframetrics Corporation, Bedford, Mass., 1988), Sec. 1.

F. P. Blommel, Electro-Optics Branch, Wright Laboratory, Wright-Patterson Air Force Base, Ohio, 45433-6543 (personal communication).

See, for example, Amber Engineering, Inc., focal plane array products, Amber Engineering, Inc., Goleta, Ga., 1990.

Mitsubishi Electric Corporation, Mitsubishi Electric Corporation, Tokyo, 1991.

K. Fukunaga, Introduction to Statistical Pattern Recognition (Academic, New York, 1972), Sec. 4.2.

R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983), Chap. 5, pp. 69–94.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1979), Chap. 2.6, pp. 17–19.

E. A. Watson, “Thermal imaging with photon-counting detectors,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1991), Chap. 2, pp. 20–43.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Effective radiance as a function of temperature of the radiating object. The solid curves are calculated by using typical values for the wavelength response of the various photocathodes. An emissivity of one is assumed. The dashed curve connects experimental data obtained by using a bialkali photocathode. The data were recorded at temperatures of 600, 700, and 800 K.

Fig. 2
Fig. 2

Images of the thermal radiation from a soldering iron, 550–600 K. The bottom row is at twice the magnification of the top row. Column (a), image obtained with a photon-counting image detector. Column (b), image obtained with a scanning thermal imager in the 8–12-μm-wavelength band. Column (c), image obtained with a scanning thermal imager in the 3–5-μm-wavelength band.

Fig. 3
Fig. 3

NEΔT as a function of the average number of detected photoevents for a photon-counting image detector. The flux from the background and the dark count is assumed small compared to the object flux, so that the primarily noise mechanism is shot noise that is associated with the signal, i.e., signal-limited detection.

Fig. 4
Fig. 4

Fisher ratio as a function of object temperature. The background temperature is assumed to be 300 K. N is the total number of photoevents detected over the entire image plane.

Fig. 5
Fig. 5

Schematic of optical system used in pattern recognition experiments. Radiation from the blackbody source is imaged upon the plane that contains the object apertures. Radiation leaving the aperture plane is imaged onto the photocathode of the photon-counting detector.

Fig. 6
Fig. 6

Plot of the experimentally determined Fisher ratio as a function of the number of detected photoevents. The dashed line is a least-squares fit to the data. The solid line represents the theoretical prediction for the same parameter values as used in the experiment.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

L p = - d λ R ( λ ) L λ ( λ ) ,
L λ ( λ ) = 2 c λ 4 exp ( - h c λ k T ) ,
NE Δ T = ( λ 0 k T 2 h c ) ( 2 B π A p sin 2 θ ) 1 / 2 ( 1 L p ) 1 / 2 ,
P = π L p A p n sin 2 θ ,
NE Δ T = ( λ 0 k T 2 h c ) ( 2 n N ) 1 / 2 ,
C ( r ) = τ h ν 0 S d S V ( r ) R ( r + r ) ,
σ 2 ( r ) = τ ( h ν 0 ) 2 S d S V ( r ) R ( r + r ) - C ( r ) N 2 ,
F = ( C R - C A ) 2 σ R 2 + σ A 2 ,
V R = E 0 Δ ( x 2 W , y W ) + E T rect ( x D , y D ) ,
Δ ( x , y ) = 1 for 0 x 1 ,             0 y 1 - x = 0 , otherwise ,
rect ( x , y ) = 1 for x 1 / 2 ,             y 1 / 2 = 0 , otherwise .
V A = E 0 rect ( x - W 2 W , y - W / 2 W / 2 ) + E T rect ( x D , y D ) ,
F = N 16 [ 3 16 + E T 2 E 0 ( - 3 + 3.5 D 2 W 2 ) + 2 ( E T E 0 ) 2 ( D 2 W 2 - 1 ) ] - 1 ,
N = τ ( E 0 W 2 + E T D 2 ) .
E = π sin 2 θ L p ,
C ( r ) = - d r V ( r ) R ( r + r ) ,
V ( r ) = j N δ ( r - r j ) ,
C ( r ) = j N R ( r + r j ) .
σ ( r ) = C 2 ( r ) - C ( r ) 2 .
V R = E 0 Δ ( x 2 W , y W ) + E T rect ( x D , y D ) + E X [ Δ ( x 2.45 W , y 1.22 W ) - Δ ( w 2 W , y W ) ] ,
V A = E 0 rect ( x - W 2 W , y - W / 2 W / 2 ) + E T rect ( x D , y D ) + E X [ rect ( x - W 2.45 W , y - W / 2 0.61 W ) - rect ( x - W 2 W , y - W / 2 W / 2 ) ,
F = N ( 0.25 - 0.10 E x E 0 ) 2 [ 3 16 + 0.825 E X E 0 + E T 2 E 0 ( - 3.0 + 3.5 D 2 W 2 ) + E T E X E 0 2 ( 0.80 + 0.10 D 2 W 2 ) + 0.05 ( E X E 0 ) 2 + 2 ( E T E 0 ) 2 ( D 2 W 2 - 1 ) ] - 1 .

Metrics