Abstract

The diffraction efficiency of a hologram in crossed polarizers, recorded by means of photoinduction of the optical anisotropy in a film with a different orientation of the polarization planes of interfering plane waves, is studied. The dependence between the diffraction efficiency of the hologram and the angle of orientation against the optical axis of the analyzer is determined both theoretically and experimentally. The theoretical calculations are based on the assumption that the photoinduction of anisotropy is due to the formation of anisotropic grains following exposure to light and only the concentration of grains is a function of exposure. The experimental results, referring to azo-dye-colored films, are in good agreement with the theoretical results of the given work.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kondo, “Über den photoanisotropen Effekt (Weigerteffekt) an Farbstoffen I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).
  2. I. Schneider, “Information storage using the anisotropy of color centers in alkali halide cystals,” Appl. Opt. 6, 2197–2198 (1967).
    [CrossRef] [PubMed]
  3. F. Lanzl, U. Röder, W. Waidelich, “Hologram recording by aligning of anisotropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
    [CrossRef]
  4. Sh. D. Kakichashvili, “On the polarization recording of holograms,” Opt. Spektrosk. 33, 324–327 (1972) [Opt. Spectrosc. (USSR) 33, 17–19 (1972)].
  5. J. M. Jonathan, M. May, “Interferograms generated by anisotropic photographic recording of two partially coherent vibrations perpendicularly polarized,” Appl. Opt. 19, 624–630 (1980).
    [CrossRef] [PubMed]
  6. S. Calixto, R. A. Lessard, “Real-time polarizing optical image processing with dyed plastic,” Appl. Opt. 24, 773–776 (1985).
    [CrossRef] [PubMed]
  7. T. D. Ebralidze, A. N. Mumladze, “On the diffraction grating generated by reversible orientational photoanisotropy,” Opt. Spektrosk. 64, 155–158 (1988).
  8. Sh. D. Kakichashvili, T. N. Kvinikhidze, “Polarizational holologram recording with reference wave of an arbitrary polarization,” Kvantovaya Elektron. (Moscow) 2, 1449–1453 (1975). [Sov. J. Quantum Electron.].
  9. M. P. Henriot, J. M. C. Jonathan, M. May, “Anisotropic response of a silver chloride emulsion printed out by linearly polarized achromatic signal,” J. Opt. Soc. Am. 73, 373–382 (1983).
    [CrossRef]
  10. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  11. T. D. Ebralidze, A. N. Mumladze, “Light-induced anisotropy in azo-dye-colored materials,” Appl. Opt. 29, 446–447 (1990).
    [CrossRef] [PubMed]
  12. T. Todorov, N. Tomova, L. Nicolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
    [CrossRef]
  13. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).
  14. T. D. Ebralidze, “On a model of anisotropic diffraction grating,” Opt. Spectrosk. 53, 944–946 (1982).
  15. R. J. Collier, Ch. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

1990 (1)

1988 (1)

T. D. Ebralidze, A. N. Mumladze, “On the diffraction grating generated by reversible orientational photoanisotropy,” Opt. Spektrosk. 64, 155–158 (1988).

1985 (1)

1984 (1)

1983 (2)

M. P. Henriot, J. M. C. Jonathan, M. May, “Anisotropic response of a silver chloride emulsion printed out by linearly polarized achromatic signal,” J. Opt. Soc. Am. 73, 373–382 (1983).
[CrossRef]

T. Todorov, N. Tomova, L. Nicolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

1982 (1)

T. D. Ebralidze, “On a model of anisotropic diffraction grating,” Opt. Spectrosk. 53, 944–946 (1982).

1980 (1)

1975 (1)

Sh. D. Kakichashvili, T. N. Kvinikhidze, “Polarizational holologram recording with reference wave of an arbitrary polarization,” Kvantovaya Elektron. (Moscow) 2, 1449–1453 (1975). [Sov. J. Quantum Electron.].

1972 (1)

Sh. D. Kakichashvili, “On the polarization recording of holograms,” Opt. Spektrosk. 33, 324–327 (1972) [Opt. Spectrosc. (USSR) 33, 17–19 (1972)].

1971 (1)

F. Lanzl, U. Röder, W. Waidelich, “Hologram recording by aligning of anisotropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
[CrossRef]

1967 (1)

1932 (1)

T. Kondo, “Über den photoanisotropen Effekt (Weigerteffekt) an Farbstoffen I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Burckhardt, Ch. B.

R. J. Collier, Ch. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

Calixto, S.

Collier, R. J.

R. J. Collier, Ch. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

Ebralidze, T. D.

T. D. Ebralidze, A. N. Mumladze, “Light-induced anisotropy in azo-dye-colored materials,” Appl. Opt. 29, 446–447 (1990).
[CrossRef] [PubMed]

T. D. Ebralidze, A. N. Mumladze, “On the diffraction grating generated by reversible orientational photoanisotropy,” Opt. Spektrosk. 64, 155–158 (1988).

T. D. Ebralidze, “On a model of anisotropic diffraction grating,” Opt. Spectrosk. 53, 944–946 (1982).

Henriot, M. P.

Jonathan, J. M.

Jonathan, J. M. C.

Kakichashvili, Sh. D.

Sh. D. Kakichashvili, T. N. Kvinikhidze, “Polarizational holologram recording with reference wave of an arbitrary polarization,” Kvantovaya Elektron. (Moscow) 2, 1449–1453 (1975). [Sov. J. Quantum Electron.].

Sh. D. Kakichashvili, “On the polarization recording of holograms,” Opt. Spektrosk. 33, 324–327 (1972) [Opt. Spectrosc. (USSR) 33, 17–19 (1972)].

Kondo, T.

T. Kondo, “Über den photoanisotropen Effekt (Weigerteffekt) an Farbstoffen I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Kvinikhidze, T. N.

Sh. D. Kakichashvili, T. N. Kvinikhidze, “Polarizational holologram recording with reference wave of an arbitrary polarization,” Kvantovaya Elektron. (Moscow) 2, 1449–1453 (1975). [Sov. J. Quantum Electron.].

Lanzl, F.

F. Lanzl, U. Röder, W. Waidelich, “Hologram recording by aligning of anisotropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
[CrossRef]

Lessard, R. A.

Lin, L. H.

R. J. Collier, Ch. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

May, M.

Mumladze, A. N.

T. D. Ebralidze, A. N. Mumladze, “Light-induced anisotropy in azo-dye-colored materials,” Appl. Opt. 29, 446–447 (1990).
[CrossRef] [PubMed]

T. D. Ebralidze, A. N. Mumladze, “On the diffraction grating generated by reversible orientational photoanisotropy,” Opt. Spektrosk. 64, 155–158 (1988).

Nicolova, L.

T. Todorov, N. Tomova, L. Nicolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

Nikolova, L.

Röder, U.

F. Lanzl, U. Röder, W. Waidelich, “Hologram recording by aligning of anisotropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
[CrossRef]

Schneider, I.

Todorov, T.

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

T. Todorov, N. Tomova, L. Nicolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

Tomova, N.

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

T. Todorov, N. Tomova, L. Nicolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

Waidelich, W.

F. Lanzl, U. Röder, W. Waidelich, “Hologram recording by aligning of anisotropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Appl. Opt. (5)

Appl. Phys. Lett. (1)

F. Lanzl, U. Röder, W. Waidelich, “Hologram recording by aligning of anisotropic color centers,” Appl. Phys. Lett. 18, 56–58 (1971).
[CrossRef]

J. Opt. Soc. Am. (1)

Kvantovaya Elektron. (Moscow) (1)

Sh. D. Kakichashvili, T. N. Kvinikhidze, “Polarizational holologram recording with reference wave of an arbitrary polarization,” Kvantovaya Elektron. (Moscow) 2, 1449–1453 (1975). [Sov. J. Quantum Electron.].

Opt. Commun. (1)

T. Todorov, N. Tomova, L. Nicolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

Opt. Spectrosk. (1)

T. D. Ebralidze, “On a model of anisotropic diffraction grating,” Opt. Spectrosk. 53, 944–946 (1982).

Opt. Spektrosk. (2)

Sh. D. Kakichashvili, “On the polarization recording of holograms,” Opt. Spektrosk. 33, 324–327 (1972) [Opt. Spectrosc. (USSR) 33, 17–19 (1972)].

T. D. Ebralidze, A. N. Mumladze, “On the diffraction grating generated by reversible orientational photoanisotropy,” Opt. Spektrosk. 64, 155–158 (1988).

Z. Wiss. Photogr. Photophys. Photochem. (1)

T. Kondo, “Über den photoanisotropen Effekt (Weigerteffekt) an Farbstoffen I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Other (2)

R. J. Collier, Ch. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conditional orientations of the polarization vector of the summation wave are given at the points where it has linear polarization. The values of the x coordinates at these points are presented. Ψ1 and Ψ2 are the angles between the directions of polarization vector of the summation wave and the Y axis.

Fig. 2
Fig. 2

Angle dependence of the diffraction efficiency in the crossed polarizers. φ is the angle between the optical axis of the analyzer and the direction along which the polarization vector of the object wave is oriented on the hologram.

Fig. 3
Fig. 3

Picture of hologram diffraction orders when the polarizers are crossed.

Fig. 4
Fig. 4

Picture of hologram diffraction orders when the polarizers are not crossed.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E = i E 0 sin ( π λ Δ n d ) exp ( - i π Δ n d / λ ) sin 2 Ψ Φ ( x , y ) ,
E ¯ ~ i E 0 sin ( π λ Δ n d ) exp ( - i π Δ n d / λ ) sin 2 Ψ S 1 ,
E ¯ ~ i A 2 E 0 sin ( π λ Δ n d ) exp ( - i π Δ n d / λ ) sin 2 Ψ ,
I ( λ ) ~ A 4 E 0 2 sin 2 ( π λ Δ n d ) sin 2 2 Ψ ,
E x = a 0 sin α cos ω t , E y = [ a 0 cos α + a 1 cos ( k x sin θ ) ] cos ω t + a 1 sin ( k x sin θ ) sin ω t ,
x = λ 2 sin θ m .
sin Ψ 1 = a 0 sin α A 1 ,             cos Ψ 1 = a 0 cos α + a 1 A 1 .
sin Ψ 2 = a 0 sin α A 2 ,             cos Ψ 2 = a 0 cos α - a 1 A 2 .
A 1 - ( a 1 2 + a 0 2 + 2 a 1 a 0 cos α ) 1 / 2 , A 2 = ( a 1 2 + a 0 2 - 2 a 1 a 0 cos α ) 1 / 2
E 1 ~ i A 1 2 E 0 sin ( π λ Δ n d ) exp ( - i π Δ n d / λ ) sin 2 Ψ 1 , E 2 ~ i A 2 2 E 0 sin ( π λ Δ n d ) exp ( - i π Δ n d / λ ) sin 2 Ψ 2 .
E ~ i E 0 sin ( π λ Δ n d ) ( A 1 2 sin 2 Ψ 1 - A 2 2 sin 2 Ψ 2 ) exp ( - i π Δ n d / λ ) .
I ( φ ) ~ E 0 2 a 0 2 a 1 2 sin 2 ( π λ Δ n d ) sin 2 ( 2 φ + α ) .

Metrics