Abstract

Recent advances in probe design have led to enhanced resolution (currently as significant as ~ 12 nm) in optical microscopes based on near-field imaging. We demonstrate that the polarization of emitted and detected light in such microscopes can be manipulated sensitively to generate contrast. We show that the contrast on certain patterns is consistent with a simple interpretation of the requisite boundary conditions, whereas in other cases a more complicated interaction between the probe and the sample is involved. Finally application of the technique to near-filed magneto-optic imaging is demonstrated.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  2. D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [CrossRef]
  3. A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500Å spatial resolution light microscope,” Ultra-microscopy 13, 227–230 (1984).
  4. U. Ch. Fischer, “Optical characteristics of 0.1 μm circular apertures in a metal film as light sources for scanning ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–391 (1985).
    [CrossRef]
  5. E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2091 (1987).
    [CrossRef]
  6. U. C. Fischer, D. W. Pohl, “Observation of single particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
    [CrossRef] [PubMed]
  7. K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
    [CrossRef] [PubMed]
  8. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  9. E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
    [CrossRef] [PubMed]
  10. M. Totzeck, “Validity of the scalar Kirchhoff and Rayleigh–Sommerfeld diffraction theories in the near field of small phase objects,” J. Opt. Soc. Am. A 8, 27–32 (1991).
    [CrossRef]

1991

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

M. Totzeck, “Validity of the scalar Kirchhoff and Rayleigh–Sommerfeld diffraction theories in the near field of small phase objects,” J. Opt. Soc. Am. A 8, 27–32 (1991).
[CrossRef]

1990

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

1989

U. C. Fischer, D. W. Pohl, “Observation of single particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

1987

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2091 (1987).
[CrossRef]

1986

1985

U. Ch. Fischer, “Optical characteristics of 0.1 μm circular apertures in a metal film as light sources for scanning ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–391 (1985).
[CrossRef]

1984

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500Å spatial resolution light microscope,” Ultra-microscopy 13, 227–230 (1984).

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2091 (1987).
[CrossRef]

E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
[CrossRef] [PubMed]

Denk, W.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Fischer, U. C.

U. C. Fischer, D. W. Pohl, “Observation of single particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

Fischer, U. Ch.

U. Ch. Fischer, “Optical characteristics of 0.1 μm circular apertures in a metal film as light sources for scanning ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–391 (1985).
[CrossRef]

Harootunian, A.

E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
[CrossRef] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500Å spatial resolution light microscope,” Ultra-microscopy 13, 227–230 (1984).

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Harush, S.

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

Isaacson, M.

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2091 (1987).
[CrossRef]

E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
[CrossRef] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500Å spatial resolution light microscope,” Ultra-microscopy 13, 227–230 (1984).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Kopelman, R.

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Lanz, M.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Lewis, A.

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2091 (1987).
[CrossRef]

E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
[CrossRef] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500Å spatial resolution light microscope,” Ultra-microscopy 13, 227–230 (1984).

Lieberman, K.

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

Muray, A.

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500Å spatial resolution light microscope,” Ultra-microscopy 13, 227–230 (1984).

Pohl, D. W.

U. C. Fischer, D. W. Pohl, “Observation of single particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Totzeck, M.

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

E. Betzig, M. Isaacson, A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2091 (1987).
[CrossRef]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

U. Ch. Fischer, “Optical characteristics of 0.1 μm circular apertures in a metal film as light sources for scanning ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–391 (1985).
[CrossRef]

Phys. Rev. Lett.

U. C. Fischer, D. W. Pohl, “Observation of single particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

Science

K. Lieberman, S. Harush, A. Lewis, R. Kopelman, “A light source smaller than the optical wavelength,” Science 247, 59–61 (1990).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Ultra-microscopy

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500Å spatial resolution light microscope,” Ultra-microscopy 13, 227–230 (1984).

Other

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the near-field scanning optical microscope showing polarization components at the probe and detector inputs: ND, neutral density filter; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Test pattern consisting of Al rings for the characterization of polarization effects in NSOM: (a) the scanning electron micrograph; (b) the conventional optical micrograph (transmission, 100×, 0.9 numerical aperture objective).

Fig. 3
Fig. 3

Al rings as reviewed by NSOM with various linear polarization states at the probe and detector: (a) probe state vertical, detector state vertical; (b) probe vertical, detector horizontal; (c) probe horizontal, detector vertical; (d) probe horizontal, detector horizontal.

Fig. 4
Fig. 4

Al rings as viewed with NSOM by using circular polarization at the probe and detector.

Fig. 5
Fig. 5

NSOM images of slotted rings in an Al film with aperture and detector polarizations as in Fig. 3.

Fig. 6
Fig. 6

NSOM images of slotted rings in a polymethylmethacrylate film with aperture and detector polarizations as in Fig. 3.

Fig. 7
Fig. 7

Polarization effects in collection-mode NSOM on (a) slotted rings in polymethylmethacrylate; (b) Al rings on glass; (c) slotted rings in an Al film. The incident electric field is approximately horizontal in all three images, and no polarizer was placed before the detector.

Fig. 8
Fig. 8

Near-field magneto-optic imaging of magnetic domains (a) and (c) and domain walls (b) in a uniaxial, bismuth-doped, yttrium-iron-garnet film.

Metrics