Abstract

Ambiguity in the conversion of phase measurements to deformation values restricts the applicability of electronic speckle-pattern interferometry. The use of two wavelengths greatly relaxes this restriction.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1983).
  2. W. Jüptner, Th. Kreis, J. Geldmacher, “Determination of the absolute fringe order in hologram interferometry with wavelength controlled lasers,” in Industrial Laser Interferometry II, M. Y. Hung, R. J. Pryputniewicz, eds., Proc. Soc. Photo-Opt. Instrum. Eng.955, 143–146 (1988).
  3. G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunaber, “Electronic speckle pattern interferometry system for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
    [CrossRef]

1990 (1)

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunaber, “Electronic speckle pattern interferometry system for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Geldmacher, J.

W. Jüptner, Th. Kreis, J. Geldmacher, “Determination of the absolute fringe order in hologram interferometry with wavelength controlled lasers,” in Industrial Laser Interferometry II, M. Y. Hung, R. J. Pryputniewicz, eds., Proc. Soc. Photo-Opt. Instrum. Eng.955, 143–146 (1988).

Gülker, G.

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunaber, “Electronic speckle pattern interferometry system for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Hinsch, K.

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunaber, “Electronic speckle pattern interferometry system for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Hölscher, C.

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunaber, “Electronic speckle pattern interferometry system for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Jones, R.

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1983).

Jüptner, W.

W. Jüptner, Th. Kreis, J. Geldmacher, “Determination of the absolute fringe order in hologram interferometry with wavelength controlled lasers,” in Industrial Laser Interferometry II, M. Y. Hung, R. J. Pryputniewicz, eds., Proc. Soc. Photo-Opt. Instrum. Eng.955, 143–146 (1988).

Kramer, A.

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunaber, “Electronic speckle pattern interferometry system for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Kreis, Th.

W. Jüptner, Th. Kreis, J. Geldmacher, “Determination of the absolute fringe order in hologram interferometry with wavelength controlled lasers,” in Industrial Laser Interferometry II, M. Y. Hung, R. J. Pryputniewicz, eds., Proc. Soc. Photo-Opt. Instrum. Eng.955, 143–146 (1988).

Neunaber, H.

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunaber, “Electronic speckle pattern interferometry system for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Wykes, C.

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1983).

Opt. Eng. (1)

G. Gülker, K. Hinsch, C. Hölscher, A. Kramer, H. Neunaber, “Electronic speckle pattern interferometry system for in situ deformation monitoring on buildings,” Opt. Eng. 29, 816–820 (1990).
[CrossRef]

Other (2)

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Press, Cambridge, 1983).

W. Jüptner, Th. Kreis, J. Geldmacher, “Determination of the absolute fringe order in hologram interferometry with wavelength controlled lasers,” in Industrial Laser Interferometry II, M. Y. Hung, R. J. Pryputniewicz, eds., Proc. Soc. Photo-Opt. Instrum. Eng.955, 143–146 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

ESPI fringes for the out-of-plane deformation within a 5 × 3.5 cm2 region of a church wall. Three sections of different tilt are separated by cracks. A comparison of absolute deformation between the regions is impossible.

Fig. 2
Fig. 2

Phase as obtained from an ESPI record versus optical path length: (a) ambiguity in the commonly used single-wavelength technique resaults in a series of possible deformation values (arrows). (b) Phase measurements at two wavelengths remove the ambiguity; coinciding arrows yield the correct deformation.

Fig. 3
Fig. 3

Two-dimensional ESPI configuration utilizing two wavelengths to remove ambiguity. Switching between wavelengths and deformation directions is done by the appropriate activation of the shutters.

Fig. 4
Fig. 4

Processed ESPI fringes for the out-of-plane tilt of a plane surface. Upper half, 780 nm wavelength; lower half, 830 nm. Arrows indicate the zero-order fringe (left) and the half-beat period (right).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ 1 = 2 π l / λ 1 + n 2 π ,
ϕ 2 = 2 π l / λ 2 + n 2 π ,
l = λ 1 λ 2 ( Φ 2 - Φ 1 ) / 2 π ( λ 1 - λ 2 ) .
l λ 0 = λ 1 λ 2 / ( λ 1 - λ 2 ) .

Metrics