Abstract

A scanning probe optical microscope using the Wiener fringe is presented. The Wiener fringe is formed by a standing wave between the incident and reflected waves on an optically reflective surface and is detected by inserting an optical fiber tip into the fringe-field region. The detected signal is used to maintain the tip–sample distance constant so that a topographic image of a sample can be obtained by a computer-assisted instrument. A spatial resolution of 200 nm has been achieved by observing a sample of known geometry.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
    [CrossRef]
  2. Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope-force mapping and profiling on a sub 100-Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
    [CrossRef]
  3. R. Erlandsson, G. M. McClelland, C. M. Mate, S. Chiang, “Atomic force microscopy using optical interferometry,” J. Vac. Sci. Technol. A 6, 266–270 (1988).
    [CrossRef]
  4. Y. Martin, H. K. Wickramasinghe, “Magnetic imaging by ‘force microscopy’ with 1000 Å resolution,” Appl. Phys. Lett. 50, 1455–1457 (1987).
    [CrossRef]
  5. J. E. Stern, B. D. Terris, H. J. Mamin, D. Rugar, “Deposition and imaging of localized charge on insulator surfaces using a force microscope,” Appl. Phys. Lett. 53, 2717–2719 (1988).
    [CrossRef]
  6. R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61, 3669–3677 (1990).
    [CrossRef]
  7. D. Courjon, J. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
    [CrossRef] [PubMed]
  8. A. Lewis, M. Issacson, A. Harootunian, A. Muray, “Development of a 500 A spatial resolution light microscope,” Ultra-microscopy 13, 227–237 (1984).
  9. U. Durig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
    [CrossRef]
  10. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1974).
  11. C. Girard, M. Spajer, “Model for reflection near field optical microscopy,” Appl. Opt. 29, 3726–3733 (1990).
    [CrossRef] [PubMed]

1990 (3)

1988 (2)

J. E. Stern, B. D. Terris, H. J. Mamin, D. Rugar, “Deposition and imaging of localized charge on insulator surfaces using a force microscope,” Appl. Phys. Lett. 53, 2717–2719 (1988).
[CrossRef]

R. Erlandsson, G. M. McClelland, C. M. Mate, S. Chiang, “Atomic force microscopy using optical interferometry,” J. Vac. Sci. Technol. A 6, 266–270 (1988).
[CrossRef]

1987 (2)

Y. Martin, H. K. Wickramasinghe, “Magnetic imaging by ‘force microscopy’ with 1000 Å resolution,” Appl. Phys. Lett. 50, 1455–1457 (1987).
[CrossRef]

Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope-force mapping and profiling on a sub 100-Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
[CrossRef]

1986 (1)

U. Durig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

1984 (1)

A. Lewis, M. Issacson, A. Harootunian, A. Muray, “Development of a 500 A spatial resolution light microscope,” Ultra-microscopy 13, 227–237 (1984).

1982 (1)

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

Binnig, G.

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1974).

Chiang, S.

R. Erlandsson, G. M. McClelland, C. M. Mate, S. Chiang, “Atomic force microscopy using optical interferometry,” J. Vac. Sci. Technol. A 6, 266–270 (1988).
[CrossRef]

Chilcott, D. W.

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61, 3669–3677 (1990).
[CrossRef]

Courjon, D.

Durig, U.

U. Durig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

Erlandsson, R.

R. Erlandsson, G. M. McClelland, C. M. Mate, S. Chiang, “Atomic force microscopy using optical interferometry,” J. Vac. Sci. Technol. A 6, 266–270 (1988).
[CrossRef]

Ferrell, T. L.

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61, 3669–3677 (1990).
[CrossRef]

Gerber, Ch.

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

Girard, C.

Harootunian, A.

A. Lewis, M. Issacson, A. Harootunian, A. Muray, “Development of a 500 A spatial resolution light microscope,” Ultra-microscopy 13, 227–237 (1984).

Issacson, M.

A. Lewis, M. Issacson, A. Harootunian, A. Muray, “Development of a 500 A spatial resolution light microscope,” Ultra-microscopy 13, 227–237 (1984).

Leblanc, S.

Lewis, A.

A. Lewis, M. Issacson, A. Harootunian, A. Muray, “Development of a 500 A spatial resolution light microscope,” Ultra-microscopy 13, 227–237 (1984).

Mamin, H. J.

J. E. Stern, B. D. Terris, H. J. Mamin, D. Rugar, “Deposition and imaging of localized charge on insulator surfaces using a force microscope,” Appl. Phys. Lett. 53, 2717–2719 (1988).
[CrossRef]

Martin, Y.

Y. Martin, H. K. Wickramasinghe, “Magnetic imaging by ‘force microscopy’ with 1000 Å resolution,” Appl. Phys. Lett. 50, 1455–1457 (1987).
[CrossRef]

Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope-force mapping and profiling on a sub 100-Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
[CrossRef]

Mate, C. M.

R. Erlandsson, G. M. McClelland, C. M. Mate, S. Chiang, “Atomic force microscopy using optical interferometry,” J. Vac. Sci. Technol. A 6, 266–270 (1988).
[CrossRef]

McClelland, G. M.

R. Erlandsson, G. M. McClelland, C. M. Mate, S. Chiang, “Atomic force microscopy using optical interferometry,” J. Vac. Sci. Technol. A 6, 266–270 (1988).
[CrossRef]

Muray, A.

A. Lewis, M. Issacson, A. Harootunian, A. Muray, “Development of a 500 A spatial resolution light microscope,” Ultra-microscopy 13, 227–237 (1984).

Pohl, D. W.

U. Durig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

Reddick, R. C.

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61, 3669–3677 (1990).
[CrossRef]

Rohner, F.

U. Durig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

Rohrer, H.

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

Rugar, D.

J. E. Stern, B. D. Terris, H. J. Mamin, D. Rugar, “Deposition and imaging of localized charge on insulator surfaces using a force microscope,” Appl. Phys. Lett. 53, 2717–2719 (1988).
[CrossRef]

Sarayeddine, K.

Sharp, S. L.

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61, 3669–3677 (1990).
[CrossRef]

Spajer, M.

Stern, J. E.

J. E. Stern, B. D. Terris, H. J. Mamin, D. Rugar, “Deposition and imaging of localized charge on insulator surfaces using a force microscope,” Appl. Phys. Lett. 53, 2717–2719 (1988).
[CrossRef]

Terris, B. D.

J. E. Stern, B. D. Terris, H. J. Mamin, D. Rugar, “Deposition and imaging of localized charge on insulator surfaces using a force microscope,” Appl. Phys. Lett. 53, 2717–2719 (1988).
[CrossRef]

Vigoureux, J.

Warmack, R. J.

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61, 3669–3677 (1990).
[CrossRef]

Weibel, E.

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

Wickramasinghe, H. K.

Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope-force mapping and profiling on a sub 100-Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
[CrossRef]

Y. Martin, H. K. Wickramasinghe, “Magnetic imaging by ‘force microscopy’ with 1000 Å resolution,” Appl. Phys. Lett. 50, 1455–1457 (1987).
[CrossRef]

Williams, C. C.

Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope-force mapping and profiling on a sub 100-Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1974).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Y. Martin, H. K. Wickramasinghe, “Magnetic imaging by ‘force microscopy’ with 1000 Å resolution,” Appl. Phys. Lett. 50, 1455–1457 (1987).
[CrossRef]

J. E. Stern, B. D. Terris, H. J. Mamin, D. Rugar, “Deposition and imaging of localized charge on insulator surfaces using a force microscope,” Appl. Phys. Lett. 53, 2717–2719 (1988).
[CrossRef]

J. Appl. Phys. (2)

Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope-force mapping and profiling on a sub 100-Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
[CrossRef]

U. Durig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318–3327 (1986).
[CrossRef]

J. Vac. Sci. Technol. A (1)

R. Erlandsson, G. M. McClelland, C. M. Mate, S. Chiang, “Atomic force microscopy using optical interferometry,” J. Vac. Sci. Technol. A 6, 266–270 (1988).
[CrossRef]

Phys. Rev. Lett. (1)

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

Rev. Sci. Instrum. (1)

R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell, “Photon scanning tunneling microscopy,” Rev. Sci. Instrum. 61, 3669–3677 (1990).
[CrossRef]

Ultra-microscopy (1)

A. Lewis, M. Issacson, A. Harootunian, A. Muray, “Development of a 500 A spatial resolution light microscope,” Ultra-microscopy 13, 227–237 (1984).

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Formation of the Wiener fringe on an optically flat surface.

Fig. 2
Fig. 2

Experimental arrangement for scanning the Wiener-fringe optical microscope: FT, fiber tip; HV, high-voltage amplifier; DMM, differential micrometer; IV, current–voltage converter; LD, laser diode; LP, linear polarizer; LIA, lock-in amplifier; OSC, oscillator; PC, personal computer; PM, photomultiplier; PID, feedback circuit; S, sample; PS, power supply for the laser diode; A/D, D/A, analog-to-digital and digital-to-analog converters, respectively.

Fig. 3
Fig. 3

Detected signal through an optical fiber versus the fiber-tip–sample distance. The tip moves (a) along the normal surface (z axis) and (b) parallel to the sample surface (x axis).

Fig. 4
Fig. 4

Spacing of the Wiener fringe as a function of the incident angle. The circles show the experimental value; the theoretical curve is obtained from Eq. (4).

Fig. 5
Fig. 5

Three-dimensional image of guiding grooves on the magneto-optical memory disk.

Fig. 6
Fig. 6

Gray scale image of 200-nm-diameter polystyrene spheres on a glass plate.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E x = 2 A p cos θ sin ( k z cos θ ) exp ( - i t ) ,
E y = - 2 A s sin ( k z cos θ ) exp ( - i t ) ,
E z = - 2 A p sin θ cos ( k z cos θ ) exp ( - i t ) ,
t = ω t - k x sin θ - π / 2 ,             k = 2 π / λ ,
I = A s 2 [ 1 - cos ( 2 k z cos θ ) ] .
E s = Q i E i + Q r E r .
I = E s E s * = Q i E i 2 + Q r E r 2 + 2 Re ( Q i Q r * E i E r * ) ,

Metrics