Abstract

In a rotating cavity rig, which models cooling air flow in the spaces between disks of a gas turbine compressor, the buildup of oxygen concentration after the cooling gas was changed from nitrogen to air was monitored using rotational coherent anti-Stokes Raman spectroscopy (CARS). From this information an estimate of the fraction of the throughflow entering the rotating cavity was obtained. This demonstrates that rotational CARS can be applied as a nonintrusive concentration-measurement technique in a rotating engineering test rig.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Vol. 7 of Energy and Engineering Science Series, A. K. Gupta, D. G. Lilley, eds. (Abacus, Tunbridge Wells, UK, 1988).
  2. D. A. Greenhalgh, R. Devonshire, I. S. Dring, J. Meads, H. F. Boysan, “CARS thermometry and nitrogen spectroscopy at ultra-high temperatures,” Appl. Opt. (to be published).
  3. J. W. Nibler, G. A. Pubanz, “Coherent Raman spectroscopy of gases,” in Advances in Non-Linear Spectroscopy, Vol. 15 of Advances in Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, Chichester, UK, 1988), pp. 1–50.
  4. M. Aldén, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
    [CrossRef] [PubMed]
  5. A. C. Eckbreth, T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes separation,” Opt. Lett. 11, 496–498 (1986).
    [CrossRef] [PubMed]
  6. P. -E. Bengtsson, L. Martinsson, M. Aldén, S. Kroll, “Rotational CARS thermometry in sooty flames,” Combust. Sci. Technol. 81, 129–139 (1992).
    [CrossRef]
  7. P. R. Farthing, C. A. Long, J. M. Owen, J. R. Pincombe, “Rotating cavity with axial throughflow of cooling air: flow structure,” ASME J. Turbomach. 114, 237–246 (1992).
    [CrossRef]
  8. C. A. Long, “Mark 2 rotating cavity rig. A heated rotating cavity with axial throughflow: a gas concentration technique to estimate the mass flow penetrating the cavity,” Tech. Note 88/TFMRC/TN68 (University of Sussex, Brighton, UK, 1988).

1992 (2)

P. -E. Bengtsson, L. Martinsson, M. Aldén, S. Kroll, “Rotational CARS thermometry in sooty flames,” Combust. Sci. Technol. 81, 129–139 (1992).
[CrossRef]

P. R. Farthing, C. A. Long, J. M. Owen, J. R. Pincombe, “Rotating cavity with axial throughflow of cooling air: flow structure,” ASME J. Turbomach. 114, 237–246 (1992).
[CrossRef]

1986 (2)

Aldén, M.

P. -E. Bengtsson, L. Martinsson, M. Aldén, S. Kroll, “Rotational CARS thermometry in sooty flames,” Combust. Sci. Technol. 81, 129–139 (1992).
[CrossRef]

M. Aldén, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

Anderson, T. J.

Bengtsson, P. -E.

P. -E. Bengtsson, L. Martinsson, M. Aldén, S. Kroll, “Rotational CARS thermometry in sooty flames,” Combust. Sci. Technol. 81, 129–139 (1992).
[CrossRef]

Bengtsson, P.-E.

Boysan, H. F.

D. A. Greenhalgh, R. Devonshire, I. S. Dring, J. Meads, H. F. Boysan, “CARS thermometry and nitrogen spectroscopy at ultra-high temperatures,” Appl. Opt. (to be published).

Devonshire, R.

D. A. Greenhalgh, R. Devonshire, I. S. Dring, J. Meads, H. F. Boysan, “CARS thermometry and nitrogen spectroscopy at ultra-high temperatures,” Appl. Opt. (to be published).

Dring, I. S.

D. A. Greenhalgh, R. Devonshire, I. S. Dring, J. Meads, H. F. Boysan, “CARS thermometry and nitrogen spectroscopy at ultra-high temperatures,” Appl. Opt. (to be published).

Eckbreth, A. C.

A. C. Eckbreth, T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes separation,” Opt. Lett. 11, 496–498 (1986).
[CrossRef] [PubMed]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Vol. 7 of Energy and Engineering Science Series, A. K. Gupta, D. G. Lilley, eds. (Abacus, Tunbridge Wells, UK, 1988).

Edner, H.

Farthing, P. R.

P. R. Farthing, C. A. Long, J. M. Owen, J. R. Pincombe, “Rotating cavity with axial throughflow of cooling air: flow structure,” ASME J. Turbomach. 114, 237–246 (1992).
[CrossRef]

Greenhalgh, D. A.

D. A. Greenhalgh, R. Devonshire, I. S. Dring, J. Meads, H. F. Boysan, “CARS thermometry and nitrogen spectroscopy at ultra-high temperatures,” Appl. Opt. (to be published).

Kroll, S.

P. -E. Bengtsson, L. Martinsson, M. Aldén, S. Kroll, “Rotational CARS thermometry in sooty flames,” Combust. Sci. Technol. 81, 129–139 (1992).
[CrossRef]

Long, C. A.

P. R. Farthing, C. A. Long, J. M. Owen, J. R. Pincombe, “Rotating cavity with axial throughflow of cooling air: flow structure,” ASME J. Turbomach. 114, 237–246 (1992).
[CrossRef]

C. A. Long, “Mark 2 rotating cavity rig. A heated rotating cavity with axial throughflow: a gas concentration technique to estimate the mass flow penetrating the cavity,” Tech. Note 88/TFMRC/TN68 (University of Sussex, Brighton, UK, 1988).

Martinsson, L.

P. -E. Bengtsson, L. Martinsson, M. Aldén, S. Kroll, “Rotational CARS thermometry in sooty flames,” Combust. Sci. Technol. 81, 129–139 (1992).
[CrossRef]

Meads, J.

D. A. Greenhalgh, R. Devonshire, I. S. Dring, J. Meads, H. F. Boysan, “CARS thermometry and nitrogen spectroscopy at ultra-high temperatures,” Appl. Opt. (to be published).

Nibler, J. W.

J. W. Nibler, G. A. Pubanz, “Coherent Raman spectroscopy of gases,” in Advances in Non-Linear Spectroscopy, Vol. 15 of Advances in Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, Chichester, UK, 1988), pp. 1–50.

Owen, J. M.

P. R. Farthing, C. A. Long, J. M. Owen, J. R. Pincombe, “Rotating cavity with axial throughflow of cooling air: flow structure,” ASME J. Turbomach. 114, 237–246 (1992).
[CrossRef]

Pincombe, J. R.

P. R. Farthing, C. A. Long, J. M. Owen, J. R. Pincombe, “Rotating cavity with axial throughflow of cooling air: flow structure,” ASME J. Turbomach. 114, 237–246 (1992).
[CrossRef]

Pubanz, G. A.

J. W. Nibler, G. A. Pubanz, “Coherent Raman spectroscopy of gases,” in Advances in Non-Linear Spectroscopy, Vol. 15 of Advances in Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, Chichester, UK, 1988), pp. 1–50.

Appl. Opt. (1)

ASME J. Turbomach. (1)

P. R. Farthing, C. A. Long, J. M. Owen, J. R. Pincombe, “Rotating cavity with axial throughflow of cooling air: flow structure,” ASME J. Turbomach. 114, 237–246 (1992).
[CrossRef]

Combust. Sci. Technol. (1)

P. -E. Bengtsson, L. Martinsson, M. Aldén, S. Kroll, “Rotational CARS thermometry in sooty flames,” Combust. Sci. Technol. 81, 129–139 (1992).
[CrossRef]

Opt. Lett. (1)

Other (4)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Vol. 7 of Energy and Engineering Science Series, A. K. Gupta, D. G. Lilley, eds. (Abacus, Tunbridge Wells, UK, 1988).

D. A. Greenhalgh, R. Devonshire, I. S. Dring, J. Meads, H. F. Boysan, “CARS thermometry and nitrogen spectroscopy at ultra-high temperatures,” Appl. Opt. (to be published).

J. W. Nibler, G. A. Pubanz, “Coherent Raman spectroscopy of gases,” in Advances in Non-Linear Spectroscopy, Vol. 15 of Advances in Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, Chichester, UK, 1988), pp. 1–50.

C. A. Long, “Mark 2 rotating cavity rig. A heated rotating cavity with axial throughflow: a gas concentration technique to estimate the mass flow penetrating the cavity,” Tech. Note 88/TFMRC/TN68 (University of Sussex, Brighton, UK, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the rotating-disk cavity rig.

Fig. 2
Fig. 2

Flow structure in the rotating cavity: (a) with unheated disks and (b) with heated disks.

Fig. 3
Fig. 3

Rotational CARS spectrum of air. Relative oxygen concentrations were determined from the ratio of the integrated intensities of the three isolated oxygen lines marked O to the six isolated nitrogen lines marked N. Overlapping lines are marked N + O.

Fig. 4
Fig. 4

Increase of circumferentially averaged oxygen percentage concentration with time for three axial flow rates. Data recorded in the frame-transfer mode. The points are experimental points and the curves are fits to Eq. (2).

Fig. 5
Fig. 5

Increase of circumferentially averaged oxygen percentage concentration with time for the highest axial flow rate. Data recorded in the direct-readout mode. The points are experimental points and the curves are fits to Eq. (2).

Tables (1)

Tables Icon

Table I Best-Fit Values of Qc/V and Fractional Cavity Flow

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 Ω u = - ( 1 / ρ r ) δ p / δ ϕ ,
C c ( t ) = C i { 1 - exp [ - ( Q c / V ) t ] } .
C c ( t ) = C c ( t ) V / V ,
C c ( ) = 17.68 % ± 0.34.

Metrics