Abstract

A multiple wavelength, pulsed CO2 lidar system operating at a pulse repetition frequency of 200 Hz and permitting the random selection of CO2 laser wavelengths for each laser pulse is presented. This system was employed to measure target reflectance and atmospheric transmission by using laser pulse bursts consisting of groups with as many as 16 different wavelengths at a repetition rate of 12 Hz. The wavelength tuning mechanism of the transversely excited atmospheric laser consists of a stationary grating and a flat mirror controlled by a galvanometer. Multiple wavelength, differential absorption lidar (DIAL) measurements reduce the effects of differential target reflectance and molecular absorption interference. Examples of multiwavelength DIAL detection for ammonia and water vapor show the dynamic interaction between these two trace gases. Target reflectance measurements for maple trees in winter and autumn are presented.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrel, “Feasibility study of satellite borne lidar global wind monitoring system, part II,” NOAA Tech Memo. ERL WPL-63 (U.S. Government Printing Office, Washington, D.C., 1980).
  2. R. M. Schotland, “Some observations of the vertical profile of water vapor by a laser optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966).
  3. R. M. Schotland, “Errors in lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
    [CrossRef]
  4. E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential absorption lidar,” Appl. Opt. 17, 814–817 (1978).
    [CrossRef] [PubMed]
  5. D. K. Killinger, N. Menyuk, “Remote probing of the atmosphere using a CO2 DIAL system,” IEEE J. Quantum Electron. QE-17, 1917–1929 (1981).
    [CrossRef]
  6. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Remote sensing of NO using a differential absorption lidar,” Appl. Opt. 19, 3283–3286 (1980).
    [CrossRef]
  7. K. Asai, T. Itabe, T. Igarashi, “Range resolved measurements of atmospheric ozone using differential absorption CO2 laser radar,” Appl. Phys. Lett. 35, 60–62 (1979).
    [CrossRef]
  8. A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
    [CrossRef] [PubMed]
  9. P. W. Baker, “Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar,” Appl. Opt. 22, 2257–2264 (1983).
    [CrossRef] [PubMed]
  10. T. Fukuda, Y. Matsuura, T. Mori, “Sensitivity of coherent range-resolved differential absorption lidar,” Appl. Opt. 23, 2026–2032 (1984).
    [CrossRef] [PubMed]
  11. R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
    [CrossRef] [PubMed]
  12. E. E. Uthe, “Airborne CO2 DIAL measurement of atmospheric tracer gas concentration,” Appl. Opt. 25, 2492–2498 (1986).
    [CrossRef] [PubMed]
  13. W. B. Grant, “The mobile atmospheric pollutant mapping (MAPH) system: a coherent CO2 DIAL system,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1062, 172–190 (1989).
  14. E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990).
    [CrossRef]
  15. J. Leonelli, P. L. Holland, J. E. van der Laan, “Multiwavelength and triple CO2 lidars for trace gas detection,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1062, 203–216 (1989).
  16. K. R. Phelps, M. L. Althouse, “Chemical agent remote sensing,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 185–189 (1987).
  17. R. E. Warren, “Effect of pulse-pair correlation on differential absorption lidar,” Appl. Opt. 24, 3472–3475 (1985).
    [CrossRef] [PubMed]
  18. W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential absorption lidar signal averaging,” Appl. Opt. 27, 1934–1938 (1988).
    [CrossRef] [PubMed]
  19. J. Fox, J. L. Ahl, “High speed tuning mechanism for CO2 lidar systems,” Appl. Opt. 25, 3830–3834 (1986).
    [CrossRef] [PubMed]
  20. F. R. Faxvog, H. W. Mocker “Rapidly tunable CO2 TEA laser,” Appl. Opt. 21, 3986–3987 (1982).
    [CrossRef] [PubMed]
  21. S. Holly, A. Iken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineering I, M. L. Stitch, E. J. Woodbury, eds., Proc. Soc. Photo-Opt. Instrum. Eng.122, 45–52 (1977).
  22. A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile sealed off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
    [CrossRef]
  23. J. E. Eberhardt, J. G. Haub, L. B. Whitbourn, “Carbon dioxide laser tuning through 110 lines in 3 ms for airborne remote sensing,” Appl. Opt. 27, 879–884 (1988).
    [CrossRef] [PubMed]
  24. R. A. Rooth, A. J. L. Verhage, L. W. Wouters, “Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide,” Appl. Opt. 29, 3643–3653 (1990).
    [CrossRef] [PubMed]
  25. M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential reflectance of natural and man-made materials at CO2 laser wavelengths,” Appl. Opt. 21, 2386–2389 (1982).
    [CrossRef] [PubMed]
  26. P. V. Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, I. Pippi, “Reflectance spectra of terrestrial surface materials at CO2 laser wavelengths: effects on DIAL and geological remote sensing,” Appl. Opt. 26, 4323–4329 (1987).
    [CrossRef] [PubMed]
  27. J. E. Eberhardt, J. G. Haub, A. W. Pryor, “Reflectivity of natural and powdered minerals at CO2 laser wavelengths,” Appl. Opt. 24, 388–395 (1985).
    [CrossRef] [PubMed]
  28. A. B. Kahle, M. S. Shumate, B. D. Nash, “Active airborne infrared laser system for identification of surface rock and mineals,” Geophys. Res. Lett. 11, 1149–1156 (1984).
    [CrossRef]
  29. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 22, 2619–2628 (1983).
    [CrossRef] [PubMed]
  30. D. A. Haner, R. T. Menzies, “Reflectance characteristics of reference materials used in lidar hard target calibration,” Appl. Opt. 28, 857–864 (1989).
    [CrossRef] [PubMed]
  31. D. B. Nash, “Mid-infrared reflectance spectra (2.3–22 μm) of sulfur, gold, KBr, MgO, and Halon,” Appl. Opt. 25, 2427–2433 (1986).
    [CrossRef] [PubMed]
  32. H. Ahlberg, S. Lundqvist, M. S. Shumate, U. Persson, “Analysis of errors caused by optical interference effects in wavelength-diverse CO2 laser long-path systems,” Appl. Opt. 24, 3917–3923 (1985).
    [CrossRef] [PubMed]
  33. M. J. Kavaya, R. T. Menzies, “Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations,” Appl. Opt. 24, 3444–3453 (1985).
    [CrossRef] [PubMed]
  34. W. Staehr, W. Lahmann, C. Weitkamp, “Range-resolved differential absorption lidar: optimization of range and sensitivity,” Appl. Opt. 24, 1950–1956 (1985).
    [CrossRef] [PubMed]
  35. A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. (to be published).
  36. W. B. Grant, “Water vapor absorption coefficients in the 8–13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
    [CrossRef] [PubMed]
  37. R. J. Brewer, C. W. Bruce, “Photoacoustic spectroscopy of NH3 at the 9-μm and 10-μm 12C16O2 laser wavelengths,” Appl. Opt. 17, 3746–3749 (1978).
    [CrossRef] [PubMed]
  38. J. Fox, C. R. Gautier, J. L. Ahl, “Practical considerations for the design of CO2 lidar systems,” Appl. Opt. 27, 847–855 (1988).
    [CrossRef] [PubMed]
  39. J. Y. Wang, P. A. Pruitt, “Laboratory target reflectance measurements for coherent laser radar applications,” Appl. Opt. 23, 2559–2564 (1984).
    [CrossRef] [PubMed]

1990 (3)

1989 (1)

1988 (3)

1987 (1)

1986 (3)

1985 (7)

1984 (4)

1983 (2)

1982 (2)

1981 (1)

D. K. Killinger, N. Menyuk, “Remote probing of the atmosphere using a CO2 DIAL system,” IEEE J. Quantum Electron. QE-17, 1917–1929 (1981).
[CrossRef]

1980 (1)

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Remote sensing of NO using a differential absorption lidar,” Appl. Opt. 19, 3283–3286 (1980).
[CrossRef]

1979 (1)

K. Asai, T. Itabe, T. Igarashi, “Range resolved measurements of atmospheric ozone using differential absorption CO2 laser radar,” Appl. Phys. Lett. 35, 60–62 (1979).
[CrossRef]

1978 (2)

1974 (1)

R. M. Schotland, “Errors in lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Ahl, J. L.

Ahlberg, H.

Althouse, M. L.

K. R. Phelps, M. L. Althouse, “Chemical agent remote sensing,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 185–189 (1987).

Asai, K.

K. Asai, T. Itabe, T. Igarashi, “Range resolved measurements of atmospheric ozone using differential absorption CO2 laser radar,” Appl. Phys. Lett. 35, 60–62 (1979).
[CrossRef]

Baker, P. W.

Ben-David, A.

A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. (to be published).

Bogan, J. R.

Brewer, R. J.

Brothers, A. M.

Bruce, C. W.

Crocker, A.

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile sealed off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Cvijin, P. V.

D’Amico, F. M.

A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. (to be published).

DeFeo, W. E.

A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Remote sensing of NO using a differential absorption lidar,” Appl. Opt. 19, 3283–3286 (1980).
[CrossRef]

Eberhardt, J. E.

Emery, S. L.

A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. (to be published).

Eng, S. T.

Faxvog, F. R.

Flamant, P. H.

Force, A. P.

A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
[CrossRef] [PubMed]

A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. (to be published).

Fox, J.

Fukuda, T.

Gautier, C. R.

Grant, W. B.

W. B. Grant, “Water vapor absorption coefficients in the 8–13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
[CrossRef] [PubMed]

W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential absorption lidar signal averaging,” Appl. Opt. 27, 1934–1938 (1988).
[CrossRef] [PubMed]

W. B. Grant, “The mobile atmospheric pollutant mapping (MAPH) system: a coherent CO2 DIAL system,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1062, 172–190 (1989).

Haner, D. A.

Hardesty, R. M.

Haub, J. G.

Holland, P. L.

J. Leonelli, P. L. Holland, J. E. van der Laan, “Multiwavelength and triple CO2 lidars for trace gas detection,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1062, 203–216 (1989).

Holly, S.

S. Holly, A. Iken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineering I, M. L. Stitch, E. J. Woodbury, eds., Proc. Soc. Photo-Opt. Instrum. Eng.122, 45–52 (1977).

Huffaker, R. M.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrel, “Feasibility study of satellite borne lidar global wind monitoring system, part II,” NOAA Tech Memo. ERL WPL-63 (U.S. Government Printing Office, Washington, D.C., 1980).

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, “Range resolved measurements of atmospheric ozone using differential absorption CO2 laser radar,” Appl. Phys. Lett. 35, 60–62 (1979).
[CrossRef]

Ignjatijevic, D.

Iken, A.

S. Holly, A. Iken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineering I, M. L. Stitch, E. J. Woodbury, eds., Proc. Soc. Photo-Opt. Instrum. Eng.122, 45–52 (1977).

Itabe, T.

K. Asai, T. Itabe, T. Igarashi, “Range resolved measurements of atmospheric ozone using differential absorption CO2 laser radar,” Appl. Phys. Lett. 35, 60–62 (1979).
[CrossRef]

Jenkins, R. M.

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile sealed off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Johnson, M.

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile sealed off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Kahle, A. B.

A. B. Kahle, M. S. Shumate, B. D. Nash, “Active airborne infrared laser system for identification of surface rock and mineals,” Geophys. Res. Lett. 11, 1149–1156 (1984).
[CrossRef]

Kavaya, M. J.

Keeler, R. J.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrel, “Feasibility study of satellite borne lidar global wind monitoring system, part II,” NOAA Tech Memo. ERL WPL-63 (U.S. Government Printing Office, Washington, D.C., 1980).

Killinger, D. K.

A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, “Remote probing of the atmosphere using a CO2 DIAL system,” IEEE J. Quantum Electron. QE-17, 1917–1929 (1981).
[CrossRef]

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Remote sensing of NO using a differential absorption lidar,” Appl. Opt. 19, 3283–3286 (1980).
[CrossRef]

Korrel, J. A.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrel, “Feasibility study of satellite borne lidar global wind monitoring system, part II,” NOAA Tech Memo. ERL WPL-63 (U.S. Government Printing Office, Washington, D.C., 1980).

Lahmann, W.

Lawrence, T. R.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrel, “Feasibility study of satellite borne lidar global wind monitoring system, part II,” NOAA Tech Memo. ERL WPL-63 (U.S. Government Printing Office, Washington, D.C., 1980).

Leonelli, J.

J. Leonelli, P. L. Holland, J. E. van der Laan, “Multiwavelength and triple CO2 lidars for trace gas detection,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1062, 203–216 (1989).

Lundqvist, S.

Matsuura, Y.

Mendas, I.

Menyuk, N.

A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, “Remote probing of the atmosphere using a CO2 DIAL system,” IEEE J. Quantum Electron. QE-17, 1917–1929 (1981).
[CrossRef]

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Remote sensing of NO using a differential absorption lidar,” Appl. Opt. 19, 3283–3286 (1980).
[CrossRef]

Menzies, R. T.

Mocker, H. W.

Mori, T.

Murray, E. R.

Nash, B. D.

A. B. Kahle, M. S. Shumate, B. D. Nash, “Active airborne infrared laser system for identification of surface rock and mineals,” Geophys. Res. Lett. 11, 1149–1156 (1984).
[CrossRef]

Nash, D. B.

Oppenheim, U. P.

Pantani, L.

Persson, U.

Phelps, K. R.

K. R. Phelps, M. L. Althouse, “Chemical agent remote sensing,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 185–189 (1987).

Pippi, I.

Post, M. J.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrel, “Feasibility study of satellite borne lidar global wind monitoring system, part II,” NOAA Tech Memo. ERL WPL-63 (U.S. Government Printing Office, Washington, D.C., 1980).

Priestly, J. T.

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrel, “Feasibility study of satellite borne lidar global wind monitoring system, part II,” NOAA Tech Memo. ERL WPL-63 (U.S. Government Printing Office, Washington, D.C., 1980).

Pruitt, P. A.

Pryor, A. W.

Rooth, R. A.

Schotland, R. M.

R. M. Schotland, “Errors in lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

R. M. Schotland, “Some observations of the vertical profile of water vapor by a laser optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966).

Shumate, M. S.

Sreckovic, M.

Staehr, W.

Uthe, E. E.

van der Laan, J. E.

E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential absorption lidar,” Appl. Opt. 17, 814–817 (1978).
[CrossRef] [PubMed]

J. Leonelli, P. L. Holland, J. E. van der Laan, “Multiwavelength and triple CO2 lidars for trace gas detection,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1062, 203–216 (1989).

Verhage, A. J. L.

Wang, J. Y.

Warren, R. E.

Weitkamp, C.

Whitbourn, L. B.

Wouters, L. W.

Zanzottera, E.

E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990).
[CrossRef]

Appl. Opt. (26)

E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential absorption lidar,” Appl. Opt. 17, 814–817 (1978).
[CrossRef] [PubMed]

R. J. Brewer, C. W. Bruce, “Photoacoustic spectroscopy of NH3 at the 9-μm and 10-μm 12C16O2 laser wavelengths,” Appl. Opt. 17, 3746–3749 (1978).
[CrossRef] [PubMed]

M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential reflectance of natural and man-made materials at CO2 laser wavelengths,” Appl. Opt. 21, 2386–2389 (1982).
[CrossRef] [PubMed]

F. R. Faxvog, H. W. Mocker “Rapidly tunable CO2 TEA laser,” Appl. Opt. 21, 3986–3987 (1982).
[CrossRef] [PubMed]

P. W. Baker, “Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar,” Appl. Opt. 22, 2257–2264 (1983).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 22, 2619–2628 (1983).
[CrossRef] [PubMed]

T. Fukuda, Y. Matsuura, T. Mori, “Sensitivity of coherent range-resolved differential absorption lidar,” Appl. Opt. 23, 2026–2032 (1984).
[CrossRef] [PubMed]

R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
[CrossRef] [PubMed]

J. Y. Wang, P. A. Pruitt, “Laboratory target reflectance measurements for coherent laser radar applications,” Appl. Opt. 23, 2559–2564 (1984).
[CrossRef] [PubMed]

J. E. Eberhardt, J. G. Haub, A. W. Pryor, “Reflectivity of natural and powdered minerals at CO2 laser wavelengths,” Appl. Opt. 24, 388–395 (1985).
[CrossRef] [PubMed]

W. Staehr, W. Lahmann, C. Weitkamp, “Range-resolved differential absorption lidar: optimization of range and sensitivity,” Appl. Opt. 24, 1950–1956 (1985).
[CrossRef] [PubMed]

A. P. Force, D. K. Killinger, W. E. DeFeo, N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, “Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations,” Appl. Opt. 24, 3444–3453 (1985).
[CrossRef] [PubMed]

R. E. Warren, “Effect of pulse-pair correlation on differential absorption lidar,” Appl. Opt. 24, 3472–3475 (1985).
[CrossRef] [PubMed]

H. Ahlberg, S. Lundqvist, M. S. Shumate, U. Persson, “Analysis of errors caused by optical interference effects in wavelength-diverse CO2 laser long-path systems,” Appl. Opt. 24, 3917–3923 (1985).
[CrossRef] [PubMed]

D. B. Nash, “Mid-infrared reflectance spectra (2.3–22 μm) of sulfur, gold, KBr, MgO, and Halon,” Appl. Opt. 25, 2427–2433 (1986).
[CrossRef] [PubMed]

E. E. Uthe, “Airborne CO2 DIAL measurement of atmospheric tracer gas concentration,” Appl. Opt. 25, 2492–2498 (1986).
[CrossRef] [PubMed]

J. Fox, J. L. Ahl, “High speed tuning mechanism for CO2 lidar systems,” Appl. Opt. 25, 3830–3834 (1986).
[CrossRef] [PubMed]

P. V. Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, I. Pippi, “Reflectance spectra of terrestrial surface materials at CO2 laser wavelengths: effects on DIAL and geological remote sensing,” Appl. Opt. 26, 4323–4329 (1987).
[CrossRef] [PubMed]

J. Fox, C. R. Gautier, J. L. Ahl, “Practical considerations for the design of CO2 lidar systems,” Appl. Opt. 27, 847–855 (1988).
[CrossRef] [PubMed]

J. E. Eberhardt, J. G. Haub, L. B. Whitbourn, “Carbon dioxide laser tuning through 110 lines in 3 ms for airborne remote sensing,” Appl. Opt. 27, 879–884 (1988).
[CrossRef] [PubMed]

W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential absorption lidar signal averaging,” Appl. Opt. 27, 1934–1938 (1988).
[CrossRef] [PubMed]

D. A. Haner, R. T. Menzies, “Reflectance characteristics of reference materials used in lidar hard target calibration,” Appl. Opt. 28, 857–864 (1989).
[CrossRef] [PubMed]

W. B. Grant, “Water vapor absorption coefficients in the 8–13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
[CrossRef] [PubMed]

R. A. Rooth, A. J. L. Verhage, L. W. Wouters, “Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide,” Appl. Opt. 29, 3643–3653 (1990).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Remote sensing of NO using a differential absorption lidar,” Appl. Opt. 19, 3283–3286 (1980).
[CrossRef]

Appl. Phys. Lett. (1)

K. Asai, T. Itabe, T. Igarashi, “Range resolved measurements of atmospheric ozone using differential absorption CO2 laser radar,” Appl. Phys. Lett. 35, 60–62 (1979).
[CrossRef]

Crit. Rev. Anal. Chem. (1)

E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990).
[CrossRef]

Geophys. Res. Lett. (1)

A. B. Kahle, M. S. Shumate, B. D. Nash, “Active airborne infrared laser system for identification of surface rock and mineals,” Geophys. Res. Lett. 11, 1149–1156 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. K. Killinger, N. Menyuk, “Remote probing of the atmosphere using a CO2 DIAL system,” IEEE J. Quantum Electron. QE-17, 1917–1929 (1981).
[CrossRef]

J. Appl. Meteorol. (1)

R. M. Schotland, “Errors in lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

J. Phys. E (1)

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile sealed off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Other (7)

A. Ben-David, A. P. Force, F. M. D’Amico, S. L. Emery, “The effect of a CO2 laser pulse shape on the accuracy of DIAL measurements,” J. Atmos. Oceanic Technol. (to be published).

W. B. Grant, “The mobile atmospheric pollutant mapping (MAPH) system: a coherent CO2 DIAL system,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1062, 172–190 (1989).

R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrel, “Feasibility study of satellite borne lidar global wind monitoring system, part II,” NOAA Tech Memo. ERL WPL-63 (U.S. Government Printing Office, Washington, D.C., 1980).

R. M. Schotland, “Some observations of the vertical profile of water vapor by a laser optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966).

J. Leonelli, P. L. Holland, J. E. van der Laan, “Multiwavelength and triple CO2 lidars for trace gas detection,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1062, 203–216 (1989).

K. R. Phelps, M. L. Althouse, “Chemical agent remote sensing,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 185–189 (1987).

S. Holly, A. Iken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineering I, M. L. Stitch, E. J. Woodbury, eds., Proc. Soc. Photo-Opt. Instrum. Eng.122, 45–52 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Block diagram of the spectroscopic lidar system.

Fig. 2
Fig. 2

Pointing mechanism and optical configuration of the lidar system, M1, M2, M3, mirrors.

Fig. 3
Fig. 3

Experimental laboratory setup for measuring target hemispheric reflectance.

Fig. 4
Fig. 4

A 1% nominal transmission ZnSe beam splitter at 45° as a function of wavelength: average of 64 pulses (squares); a single pulse (pluses).

Fig. 5
Fig. 5

Hemispheric reflectance spectra relative to a Au standard for (a) aluminum oxide ACE sandpaper grit 150 No. 17613; (b) sandblasted aluminum.

Fig. 6
Fig. 6

(a) Reflectance ratios of sandblasted aluminum to aluminum oxide sandpaper for backscattering at 180° (squares) and for hemispheric reflectance (triangles). (b) The ratio of the two curves in (a).

Fig. 7
Fig. 7

Reflectance spectra of trees in (a) autumn (15 November 1990); (b) midwinter (27 December 1990).

Fig. 8
Fig. 8

Temporal backscattered pulse shape at line 9R22 from sandblasted aluminum and from trees in midwinter (27 December 1990).

Fig. 9
Fig. 9

Atmospheric transmission through a horizontal path length (150 m × 2) measured on (a) 15 November 1990; (b) 27 December 1990: Average over 64 pulses of which group I pulses 1–64 (squares); averages over 64 pulses of which group II pulses 65–128 (triangles); a single pulse, pulse number 128 (asterisks).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P ( λ , t , R ) = P 0 ( λ , t ) [ 1 - T bs ( λ ) ] T atm 2 ( λ , R ) × A R 2 ( λ ) ρ ( λ ) cos ( θ ) ,
P ( λ , t ) = P 0 ( λ , t ) T bs ( λ ) ρ Au ( λ ) ,
g ( λ , R ) = V λ ( t ) d t V λ ( t ) d t = [ V λ ( t ) ] max [ V λ ( t ) ] max K ( λ ) ,
g ( λ , R 2 ) g ( λ , R 1 ) = R 1 2 R 2 2 T atm 2 [ λ , ( R 2 - R 1 ) ] × cos ( θ 2 ) cos ( θ 1 ) ρ R 2 ( λ ) ρ R 1 ( λ ) ,
V max ( λ ) V max ( λ ) = [ 1 - T bs ( λ ) ] T bs ( λ ) ρ is ( λ ) ρ is ( λ ) C ( λ ) C ( λ ) ,
ρ is ( λ ) = ϕ = 0 2 π θ = 0 π / 2 ρ ( θ , λ ) cos ( θ ) sin ( θ ) d θ d ϕ ,
g ( λ , R ) = 1 N i = 1 N [ V i ( λ , t ) ] max 1 N i = 1 N [ V i ( λ , t ) ] max K ( λ ) .
[ i . e . , Z = 1 N i = 1 N ( x y ) i ]
C = ln [ g ( λ o n R ) g ( λ of f R ) ] 2 ( α λ off - α λ on ) R .

Metrics