Abstract

The edge technique is a new and powerful method for measuring small frequency shifts. With the edge technique a laser is located on the steep slope of a high-resolution spectral filter, which produces large changes in transmission for small frequency shifts. A differential technique renders the frequency shift measurement insensitive to both laser and filter frequency jitter and drift. The measurement is shown to be insensitive to the laser width and shape for widths that are less than the half-width of the edge filter. The theory of the measurement is given with application to the lidar measurement of wind. The edge technique can be used to measure wind with a lidar by using either the aerosol or molecular backscattered signal. Examples of both measurements are presented. Simulations for a ground-based lidar at 1.06 μm using reasonable instrumental parameters are used to show an accuracy for the vector components of the wind that is better than 0.5 m/s from the ground to an altitude of 20 km for a 100-m vertical resolution and a 100-shot average. For a 20-m vertical resolution and a 10-shot average, simulations show an accuracy of better than 0.2 m/s in the first 2 km and better than 0.5 m/s to 5 km.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Korb, B. M. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324.
  2. R. Atlas, E. Kalnay, M. Halem, “Impact of satellite temperature sounding and wind data on numerical weather prediction,” Opt. Eng. 24, 341–346 (1985).
  3. R. Atlas, E. Kalnay, W. Baker, J. Susskind, D. Reuter, M. Halem, “Observing system simulation experiments at GSFC,” in Global Wind Measurements, W. Baker, R. Curran, eds. (Deepak, Hampton, Va., 1985), pp. 65–71.
  4. M. Halem, R. Dlouhy, “Observing system simulation experiments related to spaceborne lidar wind profiling. Part I: Forecast impacts of highly idealized observing systems,” presented at the American Meteorological Society Conference on Satellite Remote Sensing and Applications, Clearwater, Fla., 1984.
  5. J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meterol. Soc. 65, 348–259 (1984).
    [CrossRef]
  6. F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. Jackson, T. R. Lawrence, M. Post, R. Richter, B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1983).
    [CrossRef]
  7. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145 (1990).
    [CrossRef] [PubMed]
  8. R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
    [CrossRef]
  9. R. T. Menzies, “Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from Earth orbit,” Appl. Opt. 25, 2546–2552 (1986).
    [CrossRef] [PubMed]
  10. J. C. Petheram, J. Shanley, J. Sroga, R. Vitz, A. Wissinger, T. R. Lawrence, “The laser atmospheric wind sounder—preliminary design,” in Fifth Conference on Coherent Laser Radar: Technology and Applications, C. Werner, J. Bilbro, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1181, 66–78 (1989).
  11. R. Curran, ed., Laser Atmospheric Wind Sounder, EOS Instrument Panel Report, NASA Earth Observing System Rep. (National Aeronautics and Space Administration, Washington, D.C., 1987), Vol. IIg.
  12. W. Baker, R. J. Curran, eds., Aerosol Measurement Program Strategy for Global Aerosol Backscatter Model Development, NASA Workshop Rep. STC 2081 (Deepak, Hampton, Va., 1985).
  13. T. Kane, B. Zhou, R. Byer, “Potential for coherent Doppler wind velocity lidar using neodymium lasers,” Appl. Opt. 23, 2477–2481 (1984).
    [CrossRef] [PubMed]
  14. T. Kane, W. Kozlovksy, R. Byer, C. Byvik, “Coherent laser radar at 1.06 μm using Nd:YAG lasers,” Opt. Lett. 12, 239–241 (1987).
    [CrossRef] [PubMed]
  15. M. Kavaya, S. Henderson, J. Magee, C. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
    [CrossRef] [PubMed]
  16. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
    [CrossRef] [PubMed]
  17. V. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2997 (1979).
    [CrossRef] [PubMed]
  18. P. Hays, V. Abreu, J. Sroga, A. Rosenberg, “Analysis of a 0.5 micron spaceborne wind sensor,” presented at the American Meteorological Society Conference on Satellite Remote Sensing and Applications, Clearwater, Fla., 1984.
  19. I. McDermid, J. Laudenslager, D. Rees, “Ultraviolet-excimer laser-based incoherent Doppler lidar system,” in Global Wind Measurements, W. Baker, R. Curran, eds. (A. Deepak, Hampton, Va., 1985), pp. 149–155.
  20. V. J. Abreu, J. Barnes, P. B. Hays, W. R. Skinner, presented at the Second Symposium on Tropospheric Profiling Needs and Technology, Boulder, Colo., 1991.
  21. M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  22. B. Gentry, C. L. Korb, “Doppler velocimetry with sub-meter-per-second accuracy using the edge technique,” in 1991 Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 66–67.
  23. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), Chap. 7, pp. 323–329.
  24. G. Hernandez, “Analytical description of a Fabry–Perot photoelectric spectrometer,” Appl. Opt. 5, 1745–1748 (1967).
    [CrossRef]
  25. F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Angew. Phys. 15, 330–338 (1963).
  26. C. L. Korb, G. K. Schwemmer, M. Dombrowski, C. Y. Weng, “Airborne and ground based lidar measurements of the atmospheric pressure profile,” Appl. Opt. 28, 3015–3020 (1989).
    [CrossRef] [PubMed]
  27. R. T. H. Collis, Lidar, vol.. 13 of Advances in Geophysics (Academic, New York, 1969), pp. 113–139.
  28. R. A. McClatchey, R. Fenn, J. Selby, F. Volz, J. Garing, in “Optical properties of the atmosphere,” U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., Environmental Research Paper 72–0479 (1972).
  29. S. T. Shipley, D. Tracy, E. Eloranta, J. Trauger, J. Sroga, F. Roesler, J. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3732 (1983).
    [CrossRef] [PubMed]
  30. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1978).
  31. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9–75.
    [CrossRef]
  32. P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry–Perot étalons,” J. Opt. Soc. Am. 44, 761–765 (1954).
    [CrossRef]
  33. A. T. Young, G. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668–3670 (1983).
    [CrossRef] [PubMed]

1991

1990

1989

M. Kavaya, S. Henderson, J. Magee, C. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

C. L. Korb, G. K. Schwemmer, M. Dombrowski, C. Y. Weng, “Airborne and ground based lidar measurements of the atmospheric pressure profile,” Appl. Opt. 28, 3015–3020 (1989).
[CrossRef] [PubMed]

1987

1986

1985

R. Atlas, E. Kalnay, M. Halem, “Impact of satellite temperature sounding and wind data on numerical weather prediction,” Opt. Eng. 24, 341–346 (1985).

1984

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meterol. Soc. 65, 348–259 (1984).
[CrossRef]

T. Kane, B. Zhou, R. Byer, “Potential for coherent Doppler wind velocity lidar using neodymium lasers,” Appl. Opt. 23, 2477–2481 (1984).
[CrossRef] [PubMed]

1983

1979

1967

1963

F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Angew. Phys. 15, 330–338 (1963).

1954

Abreu, V.

V. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2997 (1979).
[CrossRef] [PubMed]

P. Hays, V. Abreu, J. Sroga, A. Rosenberg, “Analysis of a 0.5 micron spaceborne wind sensor,” presented at the American Meteorological Society Conference on Satellite Remote Sensing and Applications, Clearwater, Fla., 1984.

Abreu, V. J.

V. J. Abreu, J. Barnes, P. B. Hays, W. R. Skinner, presented at the Second Symposium on Tropospheric Profiling Needs and Technology, Boulder, Colo., 1991.

Atlas, R.

R. Atlas, E. Kalnay, M. Halem, “Impact of satellite temperature sounding and wind data on numerical weather prediction,” Opt. Eng. 24, 341–346 (1985).

R. Atlas, E. Kalnay, W. Baker, J. Susskind, D. Reuter, M. Halem, “Observing system simulation experiments at GSFC,” in Global Wind Measurements, W. Baker, R. Curran, eds. (Deepak, Hampton, Va., 1985), pp. 65–71.

Baker, W.

R. Atlas, E. Kalnay, W. Baker, J. Susskind, D. Reuter, M. Halem, “Observing system simulation experiments at GSFC,” in Global Wind Measurements, W. Baker, R. Curran, eds. (Deepak, Hampton, Va., 1985), pp. 65–71.

Barnes, J.

V. J. Abreu, J. Barnes, P. B. Hays, W. R. Skinner, presented at the Second Symposium on Tropospheric Profiling Needs and Technology, Boulder, Colo., 1991.

Bayer-Helms, F.

F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Angew. Phys. 15, 330–338 (1963).

Bilbro, J.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meterol. Soc. 65, 348–259 (1984).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), Chap. 7, pp. 323–329.

Byer, R.

Byvik, C.

Chanin, M. L.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, Lidar, vol.. 13 of Advances in Geophysics (Academic, New York, 1969), pp. 113–139.

Cupp, R. E.

Dlouhy, R.

M. Halem, R. Dlouhy, “Observing system simulation experiments related to spaceborne lidar wind profiling. Part I: Forecast impacts of highly idealized observing systems,” presented at the American Meteorological Society Conference on Satellite Remote Sensing and Applications, Clearwater, Fla., 1984.

Dombrowski, M.

Eloranta, E.

Fenn, R.

R. A. McClatchey, R. Fenn, J. Selby, F. Volz, J. Garing, in “Optical properties of the atmosphere,” U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., Environmental Research Paper 72–0479 (1972).

Fichtl, G.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meterol. Soc. 65, 348–259 (1984).
[CrossRef]

Fitzjarrald, D.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meterol. Soc. 65, 348–259 (1984).
[CrossRef]

Garing, J.

R. A. McClatchey, R. Fenn, J. Selby, F. Volz, J. Garing, in “Optical properties of the atmosphere,” U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., Environmental Research Paper 72–0479 (1972).

Garnier, A.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Gentry, B.

B. Gentry, C. L. Korb, “Doppler velocimetry with sub-meter-per-second accuracy using the edge technique,” in 1991 Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 66–67.

Gentry, B. M.

C. L. Korb, B. M. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324.

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9–75.
[CrossRef]

Hale, C.

Hale, C. P.

Halem, M.

R. Atlas, E. Kalnay, M. Halem, “Impact of satellite temperature sounding and wind data on numerical weather prediction,” Opt. Eng. 24, 341–346 (1985).

R. Atlas, E. Kalnay, W. Baker, J. Susskind, D. Reuter, M. Halem, “Observing system simulation experiments at GSFC,” in Global Wind Measurements, W. Baker, R. Curran, eds. (Deepak, Hampton, Va., 1985), pp. 65–71.

M. Halem, R. Dlouhy, “Observing system simulation experiments related to spaceborne lidar wind profiling. Part I: Forecast impacts of highly idealized observing systems,” presented at the American Meteorological Society Conference on Satellite Remote Sensing and Applications, Clearwater, Fla., 1984.

Hall, F. F.

Hardesty, R. M.

Hauchecorne, A.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Hays, P.

P. Hays, V. Abreu, J. Sroga, A. Rosenberg, “Analysis of a 0.5 micron spaceborne wind sensor,” presented at the American Meteorological Society Conference on Satellite Remote Sensing and Applications, Clearwater, Fla., 1984.

Hays, P. B.

V. J. Abreu, J. Barnes, P. B. Hays, W. R. Skinner, presented at the Second Symposium on Tropospheric Profiling Needs and Technology, Boulder, Colo., 1991.

Henderson, S.

Henderson, S. W.

Hernandez, G.

Huffaker, A. V.

Huffaker, R. M.

Jackson, M.

Jacquinot, P.

Kalnay, E.

R. Atlas, E. Kalnay, M. Halem, “Impact of satellite temperature sounding and wind data on numerical weather prediction,” Opt. Eng. 24, 341–346 (1985).

R. Atlas, E. Kalnay, W. Baker, J. Susskind, D. Reuter, M. Halem, “Observing system simulation experiments at GSFC,” in Global Wind Measurements, W. Baker, R. Curran, eds. (Deepak, Hampton, Va., 1985), pp. 65–71.

Kane, T.

Kattawar, G.

Kavaya, M.

Kavaya, M. J.

Kingston, R. H.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1978).

Korb, C. L.

C. L. Korb, G. K. Schwemmer, M. Dombrowski, C. Y. Weng, “Airborne and ground based lidar measurements of the atmospheric pressure profile,” Appl. Opt. 28, 3015–3020 (1989).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324.

B. Gentry, C. L. Korb, “Doppler velocimetry with sub-meter-per-second accuracy using the edge technique,” in 1991 Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 66–67.

Kozlovksy, W.

Krause, M.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meterol. Soc. 65, 348–259 (1984).
[CrossRef]

Laudenslager, J.

I. McDermid, J. Laudenslager, D. Rees, “Ultraviolet-excimer laser-based incoherent Doppler lidar system,” in Global Wind Measurements, W. Baker, R. Curran, eds. (A. Deepak, Hampton, Va., 1985), pp. 149–155.

Lawrence, T. R.

F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. Jackson, T. R. Lawrence, M. Post, R. Richter, B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1983).
[CrossRef]

J. C. Petheram, J. Shanley, J. Sroga, R. Vitz, A. Wissinger, T. R. Lawrence, “The laser atmospheric wind sounder—preliminary design,” in Fifth Conference on Coherent Laser Radar: Technology and Applications, C. Werner, J. Bilbro, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1181, 66–78 (1989).

Lee, R.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meterol. Soc. 65, 348–259 (1984).
[CrossRef]

Magee, J.

Magee, J. R.

McClatchey, R. A.

R. A. McClatchey, R. Fenn, J. Selby, F. Volz, J. Garing, in “Optical properties of the atmosphere,” U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., Environmental Research Paper 72–0479 (1972).

McDermid, I.

I. McDermid, J. Laudenslager, D. Rees, “Ultraviolet-excimer laser-based incoherent Doppler lidar system,” in Global Wind Measurements, W. Baker, R. Curran, eds. (A. Deepak, Hampton, Va., 1985), pp. 149–155.

Menzies, R. T.

Petheram, J. C.

J. C. Petheram, J. Shanley, J. Sroga, R. Vitz, A. Wissinger, T. R. Lawrence, “The laser atmospheric wind sounder—preliminary design,” in Fifth Conference on Coherent Laser Radar: Technology and Applications, C. Werner, J. Bilbro, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1181, 66–78 (1989).

Porteneuve, J.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Post, M.

Post, M. J.

Rees, D.

I. McDermid, J. Laudenslager, D. Rees, “Ultraviolet-excimer laser-based incoherent Doppler lidar system,” in Global Wind Measurements, W. Baker, R. Curran, eds. (A. Deepak, Hampton, Va., 1985), pp. 149–155.

Reuter, D.

R. Atlas, E. Kalnay, W. Baker, J. Susskind, D. Reuter, M. Halem, “Observing system simulation experiments at GSFC,” in Global Wind Measurements, W. Baker, R. Curran, eds. (Deepak, Hampton, Va., 1985), pp. 65–71.

Richter, R.

Roesler, F.

Rosenberg, A.

P. Hays, V. Abreu, J. Sroga, A. Rosenberg, “Analysis of a 0.5 micron spaceborne wind sensor,” presented at the American Meteorological Society Conference on Satellite Remote Sensing and Applications, Clearwater, Fla., 1984.

Schwemmer, G. K.

Selby, J.

R. A. McClatchey, R. Fenn, J. Selby, F. Volz, J. Garing, in “Optical properties of the atmosphere,” U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., Environmental Research Paper 72–0479 (1972).

Shanley, J.

J. C. Petheram, J. Shanley, J. Sroga, R. Vitz, A. Wissinger, T. R. Lawrence, “The laser atmospheric wind sounder—preliminary design,” in Fifth Conference on Coherent Laser Radar: Technology and Applications, C. Werner, J. Bilbro, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1181, 66–78 (1989).

Shipley, S. T.

Skinner, W. R.

V. J. Abreu, J. Barnes, P. B. Hays, W. R. Skinner, presented at the Second Symposium on Tropospheric Profiling Needs and Technology, Boulder, Colo., 1991.

Sroga, J.

S. T. Shipley, D. Tracy, E. Eloranta, J. Trauger, J. Sroga, F. Roesler, J. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3732 (1983).
[CrossRef] [PubMed]

P. Hays, V. Abreu, J. Sroga, A. Rosenberg, “Analysis of a 0.5 micron spaceborne wind sensor,” presented at the American Meteorological Society Conference on Satellite Remote Sensing and Applications, Clearwater, Fla., 1984.

J. C. Petheram, J. Shanley, J. Sroga, R. Vitz, A. Wissinger, T. R. Lawrence, “The laser atmospheric wind sounder—preliminary design,” in Fifth Conference on Coherent Laser Radar: Technology and Applications, C. Werner, J. Bilbro, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1181, 66–78 (1989).

Susskind, J.

R. Atlas, E. Kalnay, W. Baker, J. Susskind, D. Reuter, M. Halem, “Observing system simulation experiments at GSFC,” in Global Wind Measurements, W. Baker, R. Curran, eds. (Deepak, Hampton, Va., 1985), pp. 65–71.

Tracy, D.

Trauger, J.

Vitz, R.

J. C. Petheram, J. Shanley, J. Sroga, R. Vitz, A. Wissinger, T. R. Lawrence, “The laser atmospheric wind sounder—preliminary design,” in Fifth Conference on Coherent Laser Radar: Technology and Applications, C. Werner, J. Bilbro, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1181, 66–78 (1989).

Volz, F.

R. A. McClatchey, R. Fenn, J. Selby, F. Volz, J. Garing, in “Optical properties of the atmosphere,” U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., Environmental Research Paper 72–0479 (1972).

Weber, B. F.

Weinman, J.

Weng, C. Y.

Wissinger, A.

J. C. Petheram, J. Shanley, J. Sroga, R. Vitz, A. Wissinger, T. R. Lawrence, “The laser atmospheric wind sounder—preliminary design,” in Fifth Conference on Coherent Laser Radar: Technology and Applications, C. Werner, J. Bilbro, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1181, 66–78 (1989).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), Chap. 7, pp. 323–329.

Young, A. T.

Zhou, B.

Appl. Opt.

G. Hernandez, “Analytical description of a Fabry–Perot photoelectric spectrometer,” Appl. Opt. 5, 1745–1748 (1967).
[CrossRef]

V. Abreu, “Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis,” Appl. Opt. 18, 2992–2997 (1979).
[CrossRef] [PubMed]

A. T. Young, G. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668–3670 (1983).
[CrossRef] [PubMed]

S. T. Shipley, D. Tracy, E. Eloranta, J. Trauger, J. Sroga, F. Roesler, J. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3732 (1983).
[CrossRef] [PubMed]

T. Kane, B. Zhou, R. Byer, “Potential for coherent Doppler wind velocity lidar using neodymium lasers,” Appl. Opt. 23, 2477–2481 (1984).
[CrossRef] [PubMed]

F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. Jackson, T. R. Lawrence, M. Post, R. Richter, B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1983).
[CrossRef]

R. T. Menzies, “Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from Earth orbit,” Appl. Opt. 25, 2546–2552 (1986).
[CrossRef] [PubMed]

C. L. Korb, G. K. Schwemmer, M. Dombrowski, C. Y. Weng, “Airborne and ground based lidar measurements of the atmospheric pressure profile,” Appl. Opt. 28, 3015–3020 (1989).
[CrossRef] [PubMed]

M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145 (1990).
[CrossRef] [PubMed]

Bull. Am. Meterol. Soc.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler lidar wind field measurements,” Bull. Am. Meterol. Soc. 65, 348–259 (1984).
[CrossRef]

Geophys. Res. Lett.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

J. Opt. Soc. Am.

Opt. Eng.

R. Atlas, E. Kalnay, M. Halem, “Impact of satellite temperature sounding and wind data on numerical weather prediction,” Opt. Eng. 24, 341–346 (1985).

Opt. Lett.

Proc. IEEE

R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[CrossRef]

Z. Angew. Phys.

F. Bayer-Helms, “Analyse von Linienprofilen. I. Grundlagen und Messeinrichtungen,” Z. Angew. Phys. 15, 330–338 (1963).

Other

R. T. H. Collis, Lidar, vol.. 13 of Advances in Geophysics (Academic, New York, 1969), pp. 113–139.

R. A. McClatchey, R. Fenn, J. Selby, F. Volz, J. Garing, in “Optical properties of the atmosphere,” U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., Environmental Research Paper 72–0479 (1972).

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1978).

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9–75.
[CrossRef]

C. L. Korb, B. M. Gentry, “New Doppler lidar methods for atmospheric wind measurements—the edge technique,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 322–324.

R. Atlas, E. Kalnay, W. Baker, J. Susskind, D. Reuter, M. Halem, “Observing system simulation experiments at GSFC,” in Global Wind Measurements, W. Baker, R. Curran, eds. (Deepak, Hampton, Va., 1985), pp. 65–71.

M. Halem, R. Dlouhy, “Observing system simulation experiments related to spaceborne lidar wind profiling. Part I: Forecast impacts of highly idealized observing systems,” presented at the American Meteorological Society Conference on Satellite Remote Sensing and Applications, Clearwater, Fla., 1984.

B. Gentry, C. L. Korb, “Doppler velocimetry with sub-meter-per-second accuracy using the edge technique,” in 1991 Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 66–67.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), Chap. 7, pp. 323–329.

J. C. Petheram, J. Shanley, J. Sroga, R. Vitz, A. Wissinger, T. R. Lawrence, “The laser atmospheric wind sounder—preliminary design,” in Fifth Conference on Coherent Laser Radar: Technology and Applications, C. Werner, J. Bilbro, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1181, 66–78 (1989).

R. Curran, ed., Laser Atmospheric Wind Sounder, EOS Instrument Panel Report, NASA Earth Observing System Rep. (National Aeronautics and Space Administration, Washington, D.C., 1987), Vol. IIg.

W. Baker, R. J. Curran, eds., Aerosol Measurement Program Strategy for Global Aerosol Backscatter Model Development, NASA Workshop Rep. STC 2081 (Deepak, Hampton, Va., 1985).

P. Hays, V. Abreu, J. Sroga, A. Rosenberg, “Analysis of a 0.5 micron spaceborne wind sensor,” presented at the American Meteorological Society Conference on Satellite Remote Sensing and Applications, Clearwater, Fla., 1984.

I. McDermid, J. Laudenslager, D. Rees, “Ultraviolet-excimer laser-based incoherent Doppler lidar system,” in Global Wind Measurements, W. Baker, R. Curran, eds. (A. Deepak, Hampton, Va., 1985), pp. 149–155.

V. J. Abreu, J. Barnes, P. B. Hays, W. R. Skinner, presented at the Second Symposium on Tropospheric Profiling Needs and Technology, Boulder, Colo., 1991.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Block diagram of the optical layout for a lidar when the edge technique is used. The normalized edge signal, the ratio of the detector outputs, is measured for the outgoing and backscattered laser signals for each pulse. BS’s, beam splitters; M1, M2, mirrors; AMP’s, amplifiers.

Fig. 2
Fig. 2

Spectral response of a high-resolution filter as a function of frequency in units of the filter half-width α. The location of the outgoing and backscattered laser frequencies, νOUT and νRET, are shown on the edge of the filter. A small Doppler shift ΔνDOP produces a large change in signal ΔT.

Fig. 3
Fig. 3

Sensitivity, the percentage change in the differential normalized edge signal for a velocity of 1 m/s, plotted as a function of the location of the measurement on the edge in units of fringe half-widths. The curves are shown for different ratios of the laser spectral width (FWHH) to étalon half-width (HWHH).

Fig. 4
Fig. 4

Simulations of the detected photocounts for the signal backscattered from the atmosphere for an upward-viewing, ground-based lidar at 1.06 μm with a 50-deg zenith angle. The aerosol and Rayleigh (AER and RAY) components of the edge and energy monitor (EDG and EM) signals are shown as a function of altitude (range). The results are for a single shot for a vertical resolution of 100 m, a 0.5-m-diameter telescope, a laser energy of 1 J, and an étalon with a half-width of 0.00167 cm−1 (see Table 1).

Fig. 5
Fig. 5

Simulations of the detected photocounts for the signal backscattered from the atmosphere for an upward-viewing, ground-based lidar at 0.532 μm with a 50-deg zenith angle. The aerosol and Rayleigh (AER and RAY) components of the edge and energy monitor (EDG and EM) signals are shown as a function of altitude (range). Results are for a single shot for a vertical resolution of 100 m, a 0.5-m-diameter telescope, a laser energy of 0.55 J, and an étalon with a half-width of 0.00333 cm−1 (see Table 1).

Fig. 6
Fig. 6

Simulated errors in the horizontal velocity component of the wind as a function of altitude (range) at 1.06 μm for measurements with the outgoing laser frequency at x = 0.5, 1.0, and 2.0 étalon half-widths on the edge of the étalon fringe. Results are for a 100-shot average, a vertical resolution of 100 m, a 0.5-m-diameter telescope, a laser energy of 1 J, and an étalon with a half-width of 0.00167 cm−1 (see Table 1).

Fig. 7
Fig. 7

Simulated errors in the horizontal velocity component of the wind as a function of altitude (range) at 0.532 μm for measurements with the outgoing laser frequency at x = 0.5, 1.0, and 2.0 étalon half-widths on the edge of the étalon fringe. Results are for a 250-shot average, a vertical resolution of 100 m, a 0.5-m-diameter telescope, a laser energy of 0.55 J, and an étalon with a half-width of 0.00333 cm−1 (see Table 1).

Fig. 8
Fig. 8

Simulated errors in the horizontal velocity component of the wind as a function of altitude (range) at 1.06 μm for measurements with the outgoing laser frequency at x = 0.5, 1.0, and 2.0 étalon half-widths on the edge of the étalon fringe. Results are for a 10-shot average, a vertical resolution of 20 m, a 0.5-m-diameter telescope, a laser energy of 1 J, and an étalon with a half-width of 0.00167 cm−1 (see Table 1).

Fig. 9
Fig. 9

Sensitivity, the percentage change in the differential normalized edge signal for a velocity of 1 m/s, plotted as a function of the location of the measurement on the edge in units of fringe half-widths. Results are for a wavelength of 0.355 μm for étalon half-widths α that are both finer and broader than the Rayleigh half-width (0.063 cm−1).

Fig. 10
Fig. 10

Simulations of the detected photocounts for the signal backscattered from the atmosphere for an upward-viewing, ground-based lidar at 0.355 μm with a 50-deg zenith angle. The aerosol and Rayleigh (AER and RAY) components of the edge and energy monitor (EDG and EM) signals are shown as a function of altitude (range). Results are for a single shot for a vertical resolution of 300 m (1000 m) for altitudes of < 15 km (> 15 km), a 0.5-m-diameter telescope, a laser energy of 0.28 J, and an étalon with a half-width of 0.042 cm−1 (see Table 1).

Fig. 11
Fig. 11

Simulated errors in the horizontal velocity component of the wind as a function of altitude (range) at 0355 μm for measurements with the outgoing laser frequency at x = 2.0, 3.0 and 4.0 étalon half-widths on the edge of the étalon fringe. Results are for a 1000 (5000)-shot average, a vertical resolution of 300 m (1000 m) for altitudes of < 15 km (> 15 km), a 0.5-m- diameter telescope, a laser energy of 0.28 J, and an étalon with a half-width of 0.042 cm−1 (see Table 1).

Tables (1)

Tables Icon

Table I Lidar System Parameters Used in the Simulations

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

F ( ν ) = - h ( ν - ν ) f ( ν ) d ν
I ( ν ) = G g I 0 F ( ν ) ,
I EM = G 0 g 0 I 0 ,
I N ( ν ) = C F ( ν ) ,
C = G g G 0 g 0 .
I N ( ν + Δ ν ) = C F ( ν + Δ ν ) .
Δ I N = C [ F ( ν + Δ ν ) - F ( ν ) ] .
Δ ν = Δ I N C β ( ν , Δ ν ) ,
β ( ν , Δ ν ) = F ( ν + Δ ν ) - F ( ν ) Δ ν .
β ( ν , Δ ν ) = F ( ν ) + F ( ν ) Δ ν 2 + ,
Δ I N = C - h ( ν - ν ) [ f ( v + Δ ν ) - f ( ν ) ] d ν ,
Δ I N = C [ f ( v + Δ ν ) - f ( ν ) ]
β ( ν , Δ ν ) = - h ( ν - ν ) [ f ( ν + Δ ν ) - f ( ν ) Δ ν ] d ν .
Δ ν = ( 2 v c ) v ,
v = c 2 ν Δ I N C β .
Θ = 1 v Δ I N I N .
= 1 ( S / N ) Θ ,
H = sin ( γ Z ) .
1 ( S / N ) = [ 1 ( S / N ) 1 2 + 1 ( S / N ) 2 2 ] 1 / 2 ,
f ( x ) = 1 1 + x 2 ,
Θ = 1 v 2 x 1 + x 2 d x ,
N i ( R ) = E 0 λ h c A R 2 τ i η i ( β A + β R ) × Δ R exp [ - 2 0 R γ ( ν ) d x ] ,
( S / N ) 1 2 = g F ϕ A 1 + M ϕ R F ϕ A + ψ g F ϕ A ,
( S / N ) 2 2 = g 0 ϕ A 1 + ϕ R ϕ A + ψ 0 g 0 ϕ A ,
I Nc = I Nm F ( ν ) F * ( ν ) ,
( S / N ) 1 2 = g ( F ϕ A + M ϕ R ) ,
( S / N ) 2 2 = g 0 ( ϕ A + ϕ R ) .

Metrics