Abstract

The performance and the characteristics of an interferometric double-mirror spectrometer with uncollimated light are studied by measuring spectra of different radiation sources. The stationary interferometer is fabricated without a beam splitter or moving components. The measured interferogram visibilities, which are limited by the size of the source aperture, agree with the theoretical predictions for a slit and a circular source aperture. By background subtraction the effect of detection nonuniformity can be radically reduced to increase the dynamics and the resolving power of the spectrometer. We used a mercury pencil lamp for measurement and found that the dynamic range was ~ 80 dBm. When isolated spectral lines are measured, the resolving power can be improved by squeezing more than half of a spatial interference cycle onto one pixel. The maximum resolving power reached in measuring the spectra of a diode laser was 1600. The instrument is applicable to a wide range of measurements, such as the recording of temporally variant, wideband radiation sources and the monitoring of laser wavelength.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okamoto, S. Kawata, S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23, 269–273 (1984).
    [CrossRef] [PubMed]
  2. T. H. Barnes, “Photodiode array Fourier transform spectrometer with improved dynamic range,” Appl. Opt. 24, 3702–3706 (1985).
    [CrossRef] [PubMed]
  3. K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic spectroscopy using a Mach–Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169–1170 (1976).
    [CrossRef]
  4. L. A. Westling, M. G. Raymer, J. J. Snyder, “Single-shot spectral measurements and mode correlations in a multimode pulsed dye laser,” J. Opt. Soc. Am. B 1, 150–154 (1984).
    [CrossRef]
  5. M.-L. Junttila, J. Kauppinen, E. Ikonen, “Performance limits of stationary Fourier spectrometers,” J. Opt. Soc. Am. A 8, 1457–1462 (1991).
    [CrossRef]
  6. J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979).
  7. J. D. E. Beynon, D. R. Lamb, eds., Charge-Coupled Devices and Their Applications (McGraw-Hill, New York, 1980).
  8. Specifications for type TC104, 3456*1 CCD linear image sensor (Texas Instruments, Dallas, Texas, 1989).
  9. J. Kauppinen, “Correction of linear phase errors of one-sided interferograms,” Infrared Phys. 16, 359–366 (1976).
    [CrossRef]
  10. M.-L. Junttila, B. Stahlberg, E. Kyro, T. Veijola, J. Kauppinen, “Fourier transform wavemeter,” Rev. Sci. Instrum. 58, 1180–1184 (1987).
    [CrossRef]

1991 (1)

1987 (1)

M.-L. Junttila, B. Stahlberg, E. Kyro, T. Veijola, J. Kauppinen, “Fourier transform wavemeter,” Rev. Sci. Instrum. 58, 1180–1184 (1987).
[CrossRef]

1985 (1)

1984 (2)

1976 (2)

K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic spectroscopy using a Mach–Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169–1170 (1976).
[CrossRef]

J. Kauppinen, “Correction of linear phase errors of one-sided interferograms,” Infrared Phys. 16, 359–366 (1976).
[CrossRef]

Barnes, T. H.

Chamberlain, J.

J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979).

Higuchi, M.

K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic spectroscopy using a Mach–Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169–1170 (1976).
[CrossRef]

Ikonen, E.

Junttila, M.-L.

M.-L. Junttila, J. Kauppinen, E. Ikonen, “Performance limits of stationary Fourier spectrometers,” J. Opt. Soc. Am. A 8, 1457–1462 (1991).
[CrossRef]

M.-L. Junttila, B. Stahlberg, E. Kyro, T. Veijola, J. Kauppinen, “Fourier transform wavemeter,” Rev. Sci. Instrum. 58, 1180–1184 (1987).
[CrossRef]

Kauppinen, J.

M.-L. Junttila, J. Kauppinen, E. Ikonen, “Performance limits of stationary Fourier spectrometers,” J. Opt. Soc. Am. A 8, 1457–1462 (1991).
[CrossRef]

M.-L. Junttila, B. Stahlberg, E. Kyro, T. Veijola, J. Kauppinen, “Fourier transform wavemeter,” Rev. Sci. Instrum. 58, 1180–1184 (1987).
[CrossRef]

J. Kauppinen, “Correction of linear phase errors of one-sided interferograms,” Infrared Phys. 16, 359–366 (1976).
[CrossRef]

Kawata, S.

Kyro, E.

M.-L. Junttila, B. Stahlberg, E. Kyro, T. Veijola, J. Kauppinen, “Fourier transform wavemeter,” Rev. Sci. Instrum. 58, 1180–1184 (1987).
[CrossRef]

Minami, S.

Nakashima, K.

K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic spectroscopy using a Mach–Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169–1170 (1976).
[CrossRef]

Okamoto, T.

Raymer, M. G.

Snyder, J. J.

Stahlberg, B.

M.-L. Junttila, B. Stahlberg, E. Kyro, T. Veijola, J. Kauppinen, “Fourier transform wavemeter,” Rev. Sci. Instrum. 58, 1180–1184 (1987).
[CrossRef]

Veijola, T.

M.-L. Junttila, B. Stahlberg, E. Kyro, T. Veijola, J. Kauppinen, “Fourier transform wavemeter,” Rev. Sci. Instrum. 58, 1180–1184 (1987).
[CrossRef]

Westling, L. A.

Yoshihara, K.

K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic spectroscopy using a Mach–Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169–1170 (1976).
[CrossRef]

Appl. Opt. (2)

Infrared Phys. (1)

J. Kauppinen, “Correction of linear phase errors of one-sided interferograms,” Infrared Phys. 16, 359–366 (1976).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic spectroscopy using a Mach–Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169–1170 (1976).
[CrossRef]

Rev. Sci. Instrum. (1)

M.-L. Junttila, B. Stahlberg, E. Kyro, T. Veijola, J. Kauppinen, “Fourier transform wavemeter,” Rev. Sci. Instrum. 58, 1180–1184 (1987).
[CrossRef]

Other (3)

J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979).

J. D. E. Beynon, D. R. Lamb, eds., Charge-Coupled Devices and Their Applications (McGraw-Hill, New York, 1980).

Specifications for type TC104, 3456*1 CCD linear image sensor (Texas Instruments, Dallas, Texas, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical layout of the interferometer: CM, collimating mirror; MO, microscope objective; S, slit or pinhole; BS, optional beam splitter; M1, M2, plane mirrors; CL, collimating lens; D, detection plane; CY, cylindrical lens or mirror.

Fig. 2
Fig. 2

Virtual-source diagram of the spectrometer: S1, S1, virtual sources; 4α, angle between the virtual sources; l, spacing between the coherent points; β, inclination angle of the uncollimated rays.

Fig. 3
Fig. 3

Visibilities of the interferograms measured with a circular and a slit source aperture.

Fig. 4
Fig. 4

Interferograms without (upper curve) and with (lower curve) background subtraction.

Fig. 5
Fig. 5

Interpolated white-light spectra measured with a circular source aperture for 1500 ms and with a slit source aperture for 140 ms.

Fig. 6
Fig. 6

(a) SNR of interpolated white-light spectra as a function of exposure time (2200, 1100, 550, and 275 ms; no averaging). (b) SNR of interpolated white-light spectra as a function of averaging times (1, 10, and 100) at 2200-ms measuring time.

Fig. 7
Fig. 7

(a) Spectrum of an ac mercury lamp. (b) Spectrum of a low-pressure mercury pencil lamp.

Fig. 8
Fig. 8

(a) Folded spectra of a He–Ne laser (633 nm) and a near-infrared diode laser (780 nm) at the maximum optical-path differences Dmax shown by plots 1, 2, and 3. At Dmax = 0.61 mm the spectrum of the He–Ne laser with its scale is shown in the inset. (b) Central parts of interferograms that correspond to the folded spectra in (a), with the same parameters. (c) Two major modes of the diode laser measured at Dmax = 0.61 mm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D ( x ) l β = 4 α x / f ,
T ( λ ) Q ( λ ) Ω w A c d A w A w = I 0 h d w h w ,
I w = I 0 + I 0 w - w / 2 w / 2 cos [ 2 π λ ( l x / f - 4 α w ) ] d w = I 0 + I 0 sin ( z w ) z w cos ( 2 π l x / λ f ) .
I s = I 0 + I 0 2 J 1 ( z s ) z s cos ( 2 π l x / λ f ) ,
S w S s = sin ( z w ) / z w ( Ω w ) 2 J 1 ( z s ) / z s ( Ω s ) .
SNR = p V 2 ( n I dc q B n ) 1 / 2 .
R = λ Δ λ = 6.6 α r c λ f .

Metrics