Abstract

Frequency-derived distributed optical-fiber sensing is a powerful and convenient method for measuring the spatial distribution of birefringence in a high-birefringence fiber. The method relies on the special statistical characteristics of Rayleigh backscatter for its action, and these are analyzed in the context of the sensing arrangement, with an emphasis on the physical mechanisms. Implications for system design are also discussed.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Rogers, “Distributed optical-fibre sensors for the measurement of pressure, strain and temperature,” Phys. Rep. 169, 99–143 (1988).
    [CrossRef]
  2. A. J. Rogers, “Polarization-optical time domain reflectometry,” Electron. Lett. 16, 489–490 (1980).
    [CrossRef]
  3. J. P. Dakin, “Multiplexed and distributed optical-fibre sensor systems,” J. Phys. E 20, 954–967 (1987).
    [CrossRef]
  4. B. Culshaw, “Distributed and multiplexed fibre-optic sensor systems,” in Proceedings of the NATO Advanced Study Institute (Nijhoff, Dordrecht, The Netherlands, 1986).
  5. A. J. Rogers, “Distributed optical-fibre sensors,” J. Phys. D 19, 2237–2255 (1986).
    [CrossRef]
  6. T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
    [CrossRef] [PubMed]
  7. A. J. Rogers, “Forward-scatter distributed optical-fibre sensors using nonlinear interactions,” in Fiber Optics ’89, P. McGeehin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1120, 247–259 (1989).
  8. T. Valis, R. D. Turner, R. M. Measures, “Fiber-optic sensing based on counterpropagating waves,” in Optical Testing and Metrology II, C. P. Grover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.954, 625–633 (1988).
  9. M. Nakazawa, T. Horiguchi, M. Tokuda, N. Uchida, “Measurement and analysis of polarization properties of backward Rayleigh scattering for single mode optical fibers,” IEEE J. Quantum Electron. QE-17, 2326–2334 (1981).
    [CrossRef]
  10. M. Nakazawa, “Theory of backward Rayleigh scattering in polarization-maintaining single-mode fibers and its application to POTDR,” IEEE J. Quantum Electron. QE-19, 854–861 (1983).
    [CrossRef]
  11. E. Brinkmeyer, “Backscattering in single-mode fibres,” Electron. Lett. 16, 329–330 (1980).
    [CrossRef]
  12. F. Parvaneh, V. A. Handerek, A. J. Rogers, “Frequency-derived distributed optical-fibre sensing: signal-frequency downshifting,” Electron. Lett. 27, 394–396 (1991).
    [CrossRef]

1991 (1)

F. Parvaneh, V. A. Handerek, A. J. Rogers, “Frequency-derived distributed optical-fibre sensing: signal-frequency downshifting,” Electron. Lett. 27, 394–396 (1991).
[CrossRef]

1990 (1)

1988 (1)

A. J. Rogers, “Distributed optical-fibre sensors for the measurement of pressure, strain and temperature,” Phys. Rep. 169, 99–143 (1988).
[CrossRef]

1987 (1)

J. P. Dakin, “Multiplexed and distributed optical-fibre sensor systems,” J. Phys. E 20, 954–967 (1987).
[CrossRef]

1986 (1)

A. J. Rogers, “Distributed optical-fibre sensors,” J. Phys. D 19, 2237–2255 (1986).
[CrossRef]

1983 (1)

M. Nakazawa, “Theory of backward Rayleigh scattering in polarization-maintaining single-mode fibers and its application to POTDR,” IEEE J. Quantum Electron. QE-19, 854–861 (1983).
[CrossRef]

1981 (1)

M. Nakazawa, T. Horiguchi, M. Tokuda, N. Uchida, “Measurement and analysis of polarization properties of backward Rayleigh scattering for single mode optical fibers,” IEEE J. Quantum Electron. QE-17, 2326–2334 (1981).
[CrossRef]

1980 (2)

A. J. Rogers, “Polarization-optical time domain reflectometry,” Electron. Lett. 16, 489–490 (1980).
[CrossRef]

E. Brinkmeyer, “Backscattering in single-mode fibres,” Electron. Lett. 16, 329–330 (1980).
[CrossRef]

Brinkmeyer, E.

E. Brinkmeyer, “Backscattering in single-mode fibres,” Electron. Lett. 16, 329–330 (1980).
[CrossRef]

Culshaw, B.

B. Culshaw, “Distributed and multiplexed fibre-optic sensor systems,” in Proceedings of the NATO Advanced Study Institute (Nijhoff, Dordrecht, The Netherlands, 1986).

Dakin, J. P.

J. P. Dakin, “Multiplexed and distributed optical-fibre sensor systems,” J. Phys. E 20, 954–967 (1987).
[CrossRef]

Handerek, V. A.

F. Parvaneh, V. A. Handerek, A. J. Rogers, “Frequency-derived distributed optical-fibre sensing: signal-frequency downshifting,” Electron. Lett. 27, 394–396 (1991).
[CrossRef]

Horiguchi, T.

T. Kurashima, T. Horiguchi, M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[CrossRef] [PubMed]

M. Nakazawa, T. Horiguchi, M. Tokuda, N. Uchida, “Measurement and analysis of polarization properties of backward Rayleigh scattering for single mode optical fibers,” IEEE J. Quantum Electron. QE-17, 2326–2334 (1981).
[CrossRef]

Kurashima, T.

Measures, R. M.

T. Valis, R. D. Turner, R. M. Measures, “Fiber-optic sensing based on counterpropagating waves,” in Optical Testing and Metrology II, C. P. Grover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.954, 625–633 (1988).

Nakazawa, M.

M. Nakazawa, “Theory of backward Rayleigh scattering in polarization-maintaining single-mode fibers and its application to POTDR,” IEEE J. Quantum Electron. QE-19, 854–861 (1983).
[CrossRef]

M. Nakazawa, T. Horiguchi, M. Tokuda, N. Uchida, “Measurement and analysis of polarization properties of backward Rayleigh scattering for single mode optical fibers,” IEEE J. Quantum Electron. QE-17, 2326–2334 (1981).
[CrossRef]

Parvaneh, F.

F. Parvaneh, V. A. Handerek, A. J. Rogers, “Frequency-derived distributed optical-fibre sensing: signal-frequency downshifting,” Electron. Lett. 27, 394–396 (1991).
[CrossRef]

Rogers, A. J.

F. Parvaneh, V. A. Handerek, A. J. Rogers, “Frequency-derived distributed optical-fibre sensing: signal-frequency downshifting,” Electron. Lett. 27, 394–396 (1991).
[CrossRef]

A. J. Rogers, “Distributed optical-fibre sensors for the measurement of pressure, strain and temperature,” Phys. Rep. 169, 99–143 (1988).
[CrossRef]

A. J. Rogers, “Distributed optical-fibre sensors,” J. Phys. D 19, 2237–2255 (1986).
[CrossRef]

A. J. Rogers, “Polarization-optical time domain reflectometry,” Electron. Lett. 16, 489–490 (1980).
[CrossRef]

A. J. Rogers, “Forward-scatter distributed optical-fibre sensors using nonlinear interactions,” in Fiber Optics ’89, P. McGeehin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1120, 247–259 (1989).

Tateda, M.

Tokuda, M.

M. Nakazawa, T. Horiguchi, M. Tokuda, N. Uchida, “Measurement and analysis of polarization properties of backward Rayleigh scattering for single mode optical fibers,” IEEE J. Quantum Electron. QE-17, 2326–2334 (1981).
[CrossRef]

Turner, R. D.

T. Valis, R. D. Turner, R. M. Measures, “Fiber-optic sensing based on counterpropagating waves,” in Optical Testing and Metrology II, C. P. Grover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.954, 625–633 (1988).

Uchida, N.

M. Nakazawa, T. Horiguchi, M. Tokuda, N. Uchida, “Measurement and analysis of polarization properties of backward Rayleigh scattering for single mode optical fibers,” IEEE J. Quantum Electron. QE-17, 2326–2334 (1981).
[CrossRef]

Valis, T.

T. Valis, R. D. Turner, R. M. Measures, “Fiber-optic sensing based on counterpropagating waves,” in Optical Testing and Metrology II, C. P. Grover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.954, 625–633 (1988).

Electron. Lett. (3)

A. J. Rogers, “Polarization-optical time domain reflectometry,” Electron. Lett. 16, 489–490 (1980).
[CrossRef]

E. Brinkmeyer, “Backscattering in single-mode fibres,” Electron. Lett. 16, 329–330 (1980).
[CrossRef]

F. Parvaneh, V. A. Handerek, A. J. Rogers, “Frequency-derived distributed optical-fibre sensing: signal-frequency downshifting,” Electron. Lett. 27, 394–396 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Nakazawa, T. Horiguchi, M. Tokuda, N. Uchida, “Measurement and analysis of polarization properties of backward Rayleigh scattering for single mode optical fibers,” IEEE J. Quantum Electron. QE-17, 2326–2334 (1981).
[CrossRef]

M. Nakazawa, “Theory of backward Rayleigh scattering in polarization-maintaining single-mode fibers and its application to POTDR,” IEEE J. Quantum Electron. QE-19, 854–861 (1983).
[CrossRef]

J. Phys. D (1)

A. J. Rogers, “Distributed optical-fibre sensors,” J. Phys. D 19, 2237–2255 (1986).
[CrossRef]

J. Phys. E (1)

J. P. Dakin, “Multiplexed and distributed optical-fibre sensor systems,” J. Phys. E 20, 954–967 (1987).
[CrossRef]

Opt. Lett. (1)

Phys. Rep. (1)

A. J. Rogers, “Distributed optical-fibre sensors for the measurement of pressure, strain and temperature,” Phys. Rep. 169, 99–143 (1988).
[CrossRef]

Other (3)

B. Culshaw, “Distributed and multiplexed fibre-optic sensor systems,” in Proceedings of the NATO Advanced Study Institute (Nijhoff, Dordrecht, The Netherlands, 1986).

A. J. Rogers, “Forward-scatter distributed optical-fibre sensors using nonlinear interactions,” in Fiber Optics ’89, P. McGeehin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1120, 247–259 (1989).

T. Valis, R. D. Turner, R. M. Measures, “Fiber-optic sensing based on counterpropagating waves,” in Optical Testing and Metrology II, C. P. Grover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.954, 625–633 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the FD system.

Fig. 2
Fig. 2

Elements of the scatter model.

Fig. 3
Fig. 3

Integration geometry.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

E x = e x cos ( ω t + ϕ x ) , E y = e y cos ( ω t + ϕ y ) .
ϕ ( s ) = ω 0 s d s / v ( s ) ,
v x ( s ) = v - c ( s ) / 2 v y ( s ) = v + c ( s ) / 2 } c ( s ) v ,
Δ ϕ = 2 ( ϕ x - ϕ y ) = 2 ω / v 2 0 s c ( s ) d s .
f D = ( 1 / 2 π ) d ( Δ ϕ ) / d t = ( 1 / 2 π ) [ d ( Δ ϕ ) / d s ] ( d s / d t ,
f D = f / v [ c ( s ) ]
c = v 2 / b f .
f D = v / b .
E x = e x ( x , y ) cos ( ω t - β x z ) E y = e y ( x , y ) cos ( ω t - β y z ) } for [ v t - ( w / 2 ) ] < z < [ v t + ( w / 2 ) ] E x = E y = 0 elsewhere ,
J = i ω P = i ω Δ E .
E R = n , m ( a n E x + a m E y ) ,
E R = n , m ( a n E x cos γ + a m E y sin γ ) .
E R 2 = [ n , m ( a n E x cos γ + a m E y sin γ ) ] 2 ,
E R 2 = cos 2 γ ( n a n E x ) 2 + sin 2 γ ( m a m E y ) 2 + sin 2 γ n , m ( a n E x a m E y ) .
g , h a g a h = 0             for             g h ,
( n a n E x ) 2 n a n 2 E x 2 ,
( m a m E y ) 2 m a m 2 E y 2 ,
m , n a n E x a m E y n a n 2 E x E y .
E R 2 = cos 2 γ n ( a n 2 e x 2 2 ) + sin 2 γ m ( a m 2 e y 2 2 ) + sin 2 γ n [ a n 2 e x e y 2 cos ( β x - β y ) z ] .
E R 2 = e x 2 2 cos 2 γ n a n 2 + e y 2 2 sin 2 γ m a m 2 + e x e y 2 sin 2 γ n a n 2 cos ( β x - β y ) z .
n a n 2 = m a m 2 = q , say , per unit volume .
E R 2 ( z ) v = q 2 ( e x 2 cos 2 γ + e y 2 sin 2 γ ) + q e x e y 2 sin 2 γ cos ( Δ β z z ) ,
E R 2 ( z ) ν max = q 1 I 0 + q 2 I 0 cos ( Δ β z z ) .
P m ( t ) = r A ( v t / 2 - w / 4 ) ( v t / 2 + w / 4 ) E R 2 ( z ) ν , max d z .
P m ( t ) = r 1 E 0 + r 2 E 0 sin ( Δ β w ) 2 ( Δ β w ) 2 cos ( Δ β v t ) ,
f D = ( Δ β z v ) 2 π = v b z ,
sin ( Δ β w ) 2 ( Δ β w ) 2 = sin ( π w ) b ( π w ) b

Metrics